Synthetic analysis of chromatin tracing and live-cell imaging indicates pervasive spatial coupling between genes

被引:16
|
作者
Bohrer, Christopher H. [1 ]
Larson, Daniel R. [1 ]
机构
[1] NCI, Lab Receptor Biol & Gene Express, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
来源
ELIFE | 2023年 / 12卷
基金
美国国家卫生研究院;
关键词
transcription; chromatin; enhancer; bursts; noise; diffusion; None; TRANSCRIPTION; DYNAMICS; PRINCIPLES; EXPRESSION; MOTION; GENOME;
D O I
10.7554/eLife.81861
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The role of the spatial organization of chromosomes in directing transcription remains an outstanding question in gene regulation. Here, we analyze two recent single-cell imaging methodologies applied across hundreds of genes to systematically analyze the contribution of chromosome conformation to transcriptional regulation. Those methodologies are (1) single-cell chromatin tracing with super-resolution imaging in fixed cells; and (2) high-throughput labeling and imaging of nascent RNA in living cells. Specifically, we determine the contribution of physical distance to the coordination of transcriptional bursts. We find that individual genes adopt a constrained conformation and reposition toward the centroid of the surrounding chromatin upon activation. Leveraging the variability in distance inherent in single-cell imaging, we show that physical distance - but not genomic distance - between genes on individual chromosomes is the major factor driving co-bursting. By combining this analysis with live-cell imaging, we arrive at a corrected transcriptional correlation of phi asymptotic to 0.3 for genes separated by < 400 nm. We propose that this surprisingly large correlation represents a physical property of human chromosomes and establishes a benchmark for future experimental studies.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Preparation and use of Leadfluor-1, a synthetic fluorophore for live-cell lead imaging
    Evan W Miller
    Qiwen He
    Christopher J Chang
    Nature Protocols, 2008, 3 : 777 - 783
  • [22] Preparation and use of Coppersensor-1, a synthetic fluorophore for live-cell copper imaging
    Miller, Evan W.
    Zeng, Li
    Domaille, Dylan W.
    Chang, Christopher J.
    NATURE PROTOCOLS, 2006, 1 (02) : 824 - 827
  • [23] Preparation and use of Coppersensor-1, a synthetic fluorophore for live-cell copper imaging
    Evan W Miller
    Li Zeng
    Dylan W Domaille
    Christopher J Chang
    Nature Protocols, 2006, 1 : 824 - 827
  • [24] Live-cell Imaging and Analysis of Germline Stem Cell Mitosis in Caenorhabditis elegans
    Zellag, Reda M.
    Zhao, Yifan
    Gerhold, Abigail R.
    BIO-PROTOCOL, 2022, 12 (01):
  • [25] Analysis of mitosis in acute myeloid leukemia using live-cell imaging
    Schnerch, D. M.
    Felthaus, J.
    Engelhardt, M.
    Waesch, R.
    ONKOLOGIE, 2010, 33 : 215 - 215
  • [26] Analysis of focal adhesion turnover: A quantitative live-cell imaging example
    Stehbens, Samantha J.
    Wittmann, Torsten
    QUANTITATIVE IMAGING IN CELL BIOLOGY, 2014, 123 : 335 - 346
  • [27] Live-cell imaging and analysis of actin-mediated mitochondrial fission
    Shimura, Daisuke
    Shaw, Robin M.
    STAR PROTOCOLS, 2023, 4 (01):
  • [28] Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting
    Donovan, Benjamin T.
    Huynh, Anh
    Ball, David A.
    Patel, Heta P.
    Poirier, Michael G.
    Larson, Daniel R.
    Ferguson, Matthew L.
    Lenstra, Tineke L.
    EMBO JOURNAL, 2019, 38 (12):
  • [29] Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication
    Gerlich, Daniel
    Koch, Birgit
    Dupeux, Florine
    Peters, Jan-Michael
    Ellenberg, Jan
    CURRENT BIOLOGY, 2006, 16 (15) : 1571 - 1578
  • [30] Tracking and interpreting long-range chromatin interactions with super-resolution live-cell imaging
    Brandao, Hugo B.
    Gabriele, Michele
    Hansen, Anders S.
    CURRENT OPINION IN CELL BIOLOGY, 2021, 70 : 18 - 26