SETD2 regulates chromatin accessibility and transcription to suppress lung tumorigenesis

被引:5
|
作者
Xie, Yuchen [1 ,2 ]
Sahin, Merve [3 ,4 ]
Wakamatsu, Toru [1 ]
Inoue-Yamauchi, Akane [1 ]
Zhao, Wanming [1 ]
Han, Song [1 ]
Nargund, Amrita M. [1 ]
Yang, Shaoyuan [1 ]
Lyu, Yang [5 ]
Hsieh, James J. [5 ]
Leslie, Christina S. [3 ]
Cheng, Emily H. [1 ,6 ,7 ,8 ]
机构
[1] Mem Sloan Kettering Canc Ctr MSKCC, Human Oncol & Pathogenesis Program, New York, NY USA
[2] Gerstner Sloan Kettering Grad Sch Biomed Sci, New York, NY USA
[3] MSKCC, Computat & Syst Biol Program, New York, NY USA
[4] Triinst Training Program Computat Biol & Med, New York, NY USA
[5] Washington Univ, Dept Med, Mol Oncol, St Louis, MO USA
[6] MSKCC, Dept Pathol & Lab Med, New York, NY USA
[7] Weill Cornell Med Coll, New York, NY USA
[8] Mem Sloan Kettering Canc Ctr, 1275 York Ave, Box 20, New York, NY 10065 USA
关键词
HISTONE EXCHANGE; TUMOR-SUPPRESSOR; GENE-EXPRESSION; EMBRYONIC STEM; CANCER; METHYLATION; HYPB/SETD2; ENHANCERS; REPAIR; PRC2;
D O I
10.1172/jci.insight.154120
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
SETD2, a H3K36 trimethyltransferase, is the most frequently mutated epigenetic modifier in lung adenocarcinoma, with a mutation frequency of approximately 9%. However, how SETD2 loss of function promotes tumorigenesis remains unclear. Using conditional Setd2-KO mice, we demonstrated that Setd2 deficiency accelerated the initiation of KrasG12D-driven lung tumorigenesis, increased tumor burden, and significantly reduced mouse survival. An integrated chromatin accessibility and transcriptome analysis revealed a potentially novel tumor suppressor model of SETD2 in which SETD2 loss activates intronic enhancers to drive oncogenic transcriptional output, including the KRAS transcriptional signature and PRC2-repressed targets, through regulation of chromatin accessibility and histone chaperone recruitment. Importantly, SETD2 loss sensitized KRAS-mutant lung cancer to inhibition of histone chaperones, the FACT complex, or transcriptional elongation both in vitro and in vivo. Overall, our studies not only provide insight into how SETD2 loss shapes the epigenetic and transcriptional landscape to promote tumorigenesis, but they also identify potential therapeutic strategies for SETD2 mutant cancers.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Elevated levels of the methyltransferase SETD2 causes transcription and alternative splicing changes resulting in oncogenic phenotypes
    Bhattacharya, Saikat
    Reddy, Divya
    Zhang, Ning
    Li, Hua
    Workman, Jerry L. L.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
  • [32] SETD2 regulates SLC family transporter-mediated sodium and glucose reabsorptions in renal tubule
    Mitomea, Taku
    Wakuib, Hiromichi
    Azushimab, Kengo
    Ueharab, Tatsuki
    Jikuyaa, Ryosuke
    Ohtake, Shinji
    Noguchi, Go
    Kawaura, Sachi
    Iribe, Yasuhiro
    Aomori, Kota
    Tatenuma, Tomoyuki
    Ito, Hiroki
    Kawahara, Takashi
    Komeya, Mitsuru
    Ito, Yusuke
    Muraoka, Kentaro
    Furuya, Mitsuko
    Kato, Ikuma
    Fujii, Satoshi
    Nagahama, Kiyotaka
    Nishiyama, Akira
    Tamura, Tomohiko
    Kimura, Yayoi
    Kawagoe, Tatsukata
    Mizuki, Nobuhisa
    Huangi, Gang
    Uemura, Hiroji
    Yao, Masahiro
    Makiyama, Kazuhide
    Tamurab, Kouichi
    Hasumia, Hisashi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 734
  • [33] Histone methyltransferase SETD2 regulates osteosarcoma cell growth and chemosensitivity by suppressing Wnt/β-catenin signaling
    Jiang, Chaoying
    He, Chao
    Wu, Zhiqiang
    Li, Fengfeng
    Xiao, Jianru
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 502 (03) : 382 - 388
  • [34] RNA m6A regulates transcription via DNA demethylation and chromatin accessibility
    Deng, Shuang
    Zhang, Jialiang
    Su, Jiachun
    Zuo, Zhixiang
    Zeng, Lingxing
    Liu, Kaijing
    Zheng, Yanfen
    Huang, Xudong
    Bai, Ruihong
    Zhuang, Lisha
    Ye, Ying
    Li, Mei
    Pan, Ling
    Deng, Junge
    Wu, Guandi
    Li, Rui
    Zhang, Shaoping
    Wu, Chen
    Lin, Dongxin
    Chen, Jianjun
    Zheng, Jian
    NATURE GENETICS, 2022, 54 (09) : 1427 - +
  • [35] RNA m6A regulates transcription via DNA demethylation and chromatin accessibility
    Shuang Deng
    Jialiang Zhang
    Jiachun Su
    Zhixiang Zuo
    Lingxing Zeng
    Kaijing Liu
    Yanfen Zheng
    Xudong Huang
    Ruihong Bai
    Lisha Zhuang
    Ying Ye
    Mei Li
    Ling Pan
    Junge Deng
    Guandi Wu
    Rui Li
    Shaoping Zhang
    Chen Wu
    Dongxin Lin
    Jianjun Chen
    Jian Zheng
    Nature Genetics, 2022, 54 : 1427 - 1437
  • [36] The methyltransferase SETD2 couples transcription and splicing by engaging mRNA processing factors through its SHI domain
    Saikat Bhattacharya
    Michaella J. Levy
    Ning Zhang
    Hua Li
    Laurence Florens
    Michael P. Washburn
    Jerry L. Workman
    Nature Communications, 12
  • [37] Setd2 regulates quiescence and differentiation of adult hematopoietic stem cells by restricting RNA polymerase II elongation
    Zhou, Yile
    Yan, Xiaomei
    Feng, Xiaomin
    Bu, Jiachen
    Dong, Yunzhu
    Lin, Peipei
    Hayashi, Yoshihiro
    Huang, Rui
    Olsson, Andre
    Andreassen, Paul R.
    Grimes, H. Leighton
    Wang, Qian-fei
    Cheng, Tao
    Xiao, Zhijian
    Jin, Jie
    Huang, Gang
    HAEMATOLOGICA, 2018, 103 (07) : 1110 - 1123
  • [38] SETD2 transcriptional control of ATG14L/S isoforms regulates autophagosome–lysosome fusion
    Patricia González-Rodríguez
    Elizabeth Delorme-Axford
    Amélie Bernard
    Lily Keane
    Vassilis Stratoulias
    Kathleen Grabert
    Pinelopi Engskog-Vlachos
    Jens Füllgrabe
    Daniel J. Klionsky
    Bertrand Joseph
    Cell Death & Disease, 13
  • [39] Histone methyltransferase protein SETD2 interacts with p53 and selectively regulates its downstream genes
    Xie, Ping
    Tian, Chunyan
    An, Liguo
    Nie, Jing
    Lu, Kefeng
    Xing, Guichun
    Zhang, Lingqiang
    He, Fuchu
    CELLULAR SIGNALLING, 2008, 20 (09) : 1671 - 1678
  • [40] Setd2 inactivation sensitizes lung adenocarcinoma to inhibitors of oxidative respiration and mTORC1 signaling
    David M. Walter
    Amy C. Gladstein
    Katherine R. Doerig
    Ramakrishnan Natesan
    Saravana G. Baskaran
    A. Andrea Gudiel
    Keren M. Adler
    Jonuelle O. Acosta
    Douglas C. Wallace
    Irfan A. Asangani
    David M. Feldser
    Communications Biology, 6