Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride

被引:23
|
作者
Li, Shidong [1 ]
Zhuang, Zechao [2 ]
Xia, Lixue [1 ]
Zhu, Jiexin [1 ]
Liu, Ziang [1 ]
He, Ruhan [1 ]
Luo, Wen [1 ]
Huang, Wenzhong [1 ]
Shi, Changwei [1 ]
Zhao, Yan [3 ,4 ]
Zhou, Liang [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[3] Wuhan Univ Technol, Int Sch Mat Sci & Engn, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[4] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
关键词
electrophilicity; nitrogen sites; chainmail carbon shell; vanadium nitride; oxygen reduction reaction; LITHIUM STORAGE; RATIONAL DESIGN; CATALYSTS; NANOTUBES; PERFORMANCE; EVOLUTION; ELECTROCATALYSTS; HYBRID; MODULATION; NANOSHEETS;
D O I
10.1007/s40843-022-2116-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nitrogen-doped carbon (NC) demonstrates great promise as an alternative electrocatalyst for the oxygen reduction reaction (ORR). The C atoms next to the N dopant have been identified as the exact active sites, and optimizing the electronic structure of N has a great effect on the activity. In this study, a novel VN@NC nanocomposite consisting of a vanadium nitride (VN) nanoparticle core and chainmail-like NC shell has been constructed via a simple physical mixing and annealing process. Benefiting from the unique core@shell nanowire structure and modulated electronic structure, the as-prepared VN@NC manifests an obviously promoted ORR activity (onset potential: 0.93 V) compared with pure NC and bulk VN. Specifically, incorporating VN induces charge transfer from N on NC to V in VN and increases the electrophilicity of N on NC, resulting in optimized adsorption to O-containing intermediates. VN@NC also manifests decent long-term stability (89% current density retention after a 40,000-s test). This finding highlights the significance of regulating the electronic structure of N in NC and provides a reliable strategy for constructing NC-based hybrid electrocatalysts.
引用
收藏
页码:160 / 168
页数:9
相关论文
共 50 条
  • [21] Nitrogen-doped carbon nanofibers on expanded graphite as oxygen reduction electrocatalysts
    Buan, Marthe E. M.
    Muthuswamy, Navaneethan
    Walmsley, John C.
    Chen, De
    Ronning, Magnus
    CARBON, 2016, 101 : 191 - 202
  • [22] Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions
    Wei, Qiliang
    Tong, Xin
    Zhang, Gaixia
    Qiao, Jinli
    Gong, Qiaojuan
    Sun, Shuhui
    CATALYSTS, 2015, 5 (03) : 1574 - 1602
  • [23] Nitrogen-Doped Carbon Foam: Preparation and Oxygen Reduction Reaction Performance
    Li, Jing-Han
    Song, Ya-Cheng
    Zhou, Ya-Zhou
    Cheng, Xiao-Nong
    Yang, Juan
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2021, 37 (03) : 457 - 464
  • [24] The Oxygen Reduction Activity of Nitrogen-doped Graphene
    Liu Jian-feng
    Sun Ge
    Wang Ting
    Ning Kai
    Yuan Bin-xia
    Pan Wei-guo
    POLISH JOURNAL OF CHEMICAL TECHNOLOGY, 2022, 24 (03) : 29 - 34
  • [25] Mechanistic Discussion of the Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes
    Wiggins-Camacho, Jaclyn D.
    Stevenson, Keith J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40): : 20002 - 20010
  • [26] Enhanced oxygen reduction reaction performance of nitrogen-doped carbon nanocages
    Shenggao Wang
    Xujie Wang
    Quanrong Deng
    Yangwu Mao
    Geming Wang
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 6608 - 6616
  • [27] Microwave plasma synthesized nitrogen-doped carbon nanotubes for oxygen reduction
    Zurong Du
    Shenggao Wang
    Chuixiong Kong
    Quanrong Deng
    Geming Wang
    Chong Liang
    Haolin Tang
    Journal of Solid State Electrochemistry, 2015, 19 : 1541 - 1549
  • [28] Hierarchically tubular nitrogen-doped carbon structures for the oxygen reduction reaction
    Wei, Wei
    Ge, Hongtao
    Huang, Linsong
    Kuang, Min
    Al-Enizi, Abdullah M.
    Zhang, Lijuan
    Zheng, Gengfeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (26) : 13634 - 13638
  • [29] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Studt, Felix
    CATALYSIS LETTERS, 2013, 143 (01) : 58 - 60
  • [30] Active sites for the oxygen reduction reaction in nitrogen-doped carbon nanofibers
    Buan, Marthe E. M.
    Cognigni, Andrea
    Walmsley, John C.
    Muthuswamy, Navaneethan
    Ronning, Magnus
    CATALYSIS TODAY, 2020, 357 : 248 - 258