Classification Prediction of Lung Cancer Based on Machine Learning Method

被引:0
|
作者
Li, Dantong [1 ]
Li, Guixin [1 ]
Li, Shuang [1 ]
Bang, Ashley [2 ]
机构
[1] Weifang Hosp Tradit Chinese Med, Weifang, Peoples R China
[2] St Nicholas Sch, Danang, Vietnam
关键词
Lung Cancer Typing; Machine Learning; Random Forest; Support Vector Machine;
D O I
10.4018/IJHISI.333631
中图分类号
R-058 [];
学科分类号
摘要
The K-nearest neighbor interpolation method was used to fill in missing data of five indicators of coronary heart disease, diabetes, total cholesterol, triglycerides, and albumin;, and the SMOTE algorithm was used to balance the number of variable indicators. The Relief-F algorithm was used to remove 18 variable indicators and retain 42 variable indicators. LASSO and ridge regression algorithms were used to remove eight variable indicators and retain 52 variable indicators; The prediction accuracy, recall, and AUC values of the linear kernel support vector machine model filtered using Relief-F and LASSO features are high, and the prediction results are optimal; The test result of random forest screened by Relief-F and LASSO features is better than that of the support vector machine model. It is concluded that the random forest model screened by Relief-F features is better as a prediction of lung cancer typing. The research results provide theoretical data support for predicting lung cancer classification using machine learning methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Flight delay prediction based on machine learning method
    Fan, Yilu
    Proceedings of SPIE - The International Society for Optical Engineering, 2024, 13281
  • [42] Yarn properties prediction based on machine learning method
    Jian-Guo, Yang
    Zhi-Jun, Lü
    Bei-zhi, Li
    Journal of Donghua University (English Edition), 2007, 24 (06) : 781 - 786
  • [43] Yarn Properties Prediction Based on Machine Learning Method
    杨建国
    吕志军
    李蓓智
    Journal of Donghua University(English Edition), 2007, (06) : 781 - 786
  • [44] Prediction of bone metastasis in non-small cell lung cancer based on machine learning
    Li, Meng-Pan
    Liu, Wen-Cai
    Sun, Bo-Lin
    Zhong, Nan-Shan
    Liu, Zhi-Li
    Huang, Shan-Hu
    Zhang, Zhi-Hong
    Liu, Jia-Ming
    FRONTIERS IN ONCOLOGY, 2023, 12
  • [45] Error prediction of balancing machine calibration based on machine learning method
    Hu, Yanjuan
    Lv, Wenjun
    Wang, Zhanli
    Liu, Liang
    Liu, Hongliang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 184
  • [46] A machine-learning-based prediction method for easy COPD classification based on pulse oximetry clinical use
    Abineza, Claudia
    Balas, Valentina E.
    Nsengiyumva, Philibert
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (02) : 1683 - 1695
  • [47] Machine learning application in personalised lung cancer recurrence and survivability prediction
    Yang, Yang
    Xu, Li
    Sun, Liangdong
    Zhang, Peng
    Farid, Suzanne S.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 1811 - 1820
  • [48] Machine learning approaches to lung cancer prediction from mass spectra
    Hilario, M
    Kalousis, A
    Müller, M
    Pellegrini, C
    PROTEOMICS, 2003, 3 (09) : 1716 - 1719
  • [49] Lung cancer prediction using machine learning and advanced imaging techniques
    Kadir, Timor
    Gleeson, Fergus
    TRANSLATIONAL LUNG CANCER RESEARCH, 2018, 7 (03) : 304 - 312
  • [50] Performance of machine learning algorithms for lung cancer prediction: a comparative approach
    Maurya, Satya Prakash
    Sisodia, Pushpendra Singh
    Mishra, Rahul
    Singh, Devesh Pratap
    SCIENTIFIC REPORTS, 2024, 14 (01):