Binding of synthetic nanobodies to the SARS-CoV-2 receptor-binding domain: the importance of salt bridges

被引:0
|
作者
Shen, Hujun [1 ]
Yang, Hengxiu [1 ]
机构
[1] Guizhou Educ Univ, Guizhou Prov Key Lab Computat Nano Mat Sci, Guiyang 550018, Peoples R China
基金
中国国家自然科学基金;
关键词
SPIKE; MUTATIONS; GUI;
D O I
10.1039/d3cp02628k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, five different SARS-CoV-2 receptor-binding domain (RBD) models were created based on the crystal structures of RBD complexes with two synthetic nanobodies (Sb16 and Sb45). Microsecond all-atom MD simulations revealed that Sb16 and Sb45 substantially stabilized the flexible RBD loop (residues GLU471-SER494) due to the salt bridges and hydrogen bonding interactions between RBD and the synthetic nanobodies. However, the calculation of binding free energy displayed that Sb45 had a higher binding affinity to RBD than Sb16, in agreement with the experimental result. This is because Sb45 has stronger electrostatic attraction to RBD as compared to Sb16. In particular, the salt bridge GLU484-ARG33 in Sb45-RBD is stronger than the GLU484-LYS32 in Sb16-RBD. Furthermore, by comparing the binding affinity of Sb16 for two RBD mutants (E484K and K417N), we found that E484K mutation substantially reduced the binding affinity to Sb16, and K417N mutation had no significant effect, qualitatively in agreement with experimental studies. According to the binding free energy calculation, the strong electrostatic repulsion between LYS32 and LYS484 caused by E484K mutation destroys the salt bridge between LYS32 and GLU484 in the RBD wild type (WT). In contrast, the binding of the K417N mutant to Sb16 effectively maintains the salt bridge between LYS32 and GLU484. Therefore, our research suggests that the salt bridges between RBD and synthetic nanobodies are crucial for binding synthetic nanobodies to RBD, and a SARS-CoV-2 variant can escape neutralization from nanobodies by creating electrostatic repulsion between them. The salt bridges between RBD and synthetic nanobodies are crucial for binding synthetic nanobodies to RBD. The binding of nanobodies to RBD or its mutants can be improved by increasing the electrostatic attraction between them (especially the formation of salt bridges).
引用
收藏
页码:24129 / 24142
页数:14
相关论文
共 50 条
  • [31] Broad immunity to SARS-CoV-2 variants of concern mediated by a SARS-CoV-2 receptor-binding domain protein vaccine
    Deliyannis, Georgia
    Gherardin, Nicholas A.
    Wong, Chinn Yi
    Grimley, Samantha L.
    Cooney, James P.
    Redmond, Samuel J.
    Ellenberg, Paula
    Davidson, Kathryn C.
    Mordant, Francesca L.
    Smith, Tim
    Gillard, Marianne
    Lopez, Ester
    McAuley, Julie
    Tan, Chee Wah
    Wang, Jing J.
    Zeng, Weiguang
    Littlejohn, Mason
    Zhou, Runhong
    Chan, Jasper Fuk-Woo
    Chen, Zhi-wei
    Hartwig, Airn E.
    Bowen, Richard
    Mackenzie, Jason M.
    Vincan, Elizabeth
    Torresi, Joseph
    Kedzierska, Katherine
    Pouton, Colin W.
    Gordon, Tom P.
    Wang, Lin-fa
    Kent, Stephen J.
    Wheatley, Adam K.
    Lewin, Sharon R.
    Subbarao, Kanta
    Chung, Amy W.
    Pellegrini, Marc
    Munro, Trent
    Nolan, Terry
    Rockman, Steven
    Jackson, David C.
    Purcell, Damian F. J.
    Godfrey, Dale I.
    [J]. EBIOMEDICINE, 2023, 92
  • [32] Fixation and reversion of mutations in the receptor-binding domain of SARS-CoV-2 spike protein
    Focosi, Daniele
    Spezia, Pietro Giorgio
    Maggi, Fabrizio
    [J]. DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2024, 108 (02)
  • [33] Insights into the conformation changes of SARS-CoV-2 spike receptor-binding domain on graphene
    Du, Jianbin
    Yang, Chunmei
    Ma, Xiangyun
    Li, Qifeng
    [J]. Applied Surface Science, 2022, 578
  • [34] Enhancement of SARS-CoV-2 receptor-binding domain activity by two microbial defensins
    Gao, Bin
    Zhu, Shunyi
    [J]. FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [35] Discovery of Aptamers Targeting the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein
    Song, Yanling
    Song, Jia
    Wei, Xinyu
    Huang, Mengjiao
    Sun, Miao
    Zhu, Lin
    Lin, Bingqian
    Shen, Haicong
    Zhu, Zhi
    Yang, Chaoyong
    [J]. ANALYTICAL CHEMISTRY, 2020, 92 (14) : 9895 - 9900
  • [36] The Nuts and Bolts of SARS-CoV-2 Spike Receptor-Binding Domain Heterologous Expression
    Maffei, Mariano
    Montemiglio, Linda Celeste
    Vitagliano, Grazia
    Fedele, Luigi
    Sellathurai, Shaila
    Bucci, Federica
    Compagnone, Mirco
    Chiarini, Valerio
    Exertier, Cecile
    Muzi, Alessia
    Roscilli, Giuseppe
    Vallone, Beatrice
    Marra, Emanuele
    [J]. BIOMOLECULES, 2021, 11 (12)
  • [37] Receptor-binding domain of SARS-CoV-2 is a functional αv-integrin agonist
    Norris, Emma G.
    Pan, Xuan Sabrina
    Hocking, Denise C.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (03)
  • [38] Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
    Lan, Jun
    Ge, Jiwan
    Yu, Jinfang
    Shan, Sisi
    Zhou, Huan
    Fan, Shilong
    Zhang, Qi
    Shi, Xuanling
    Wang, Qisheng
    Zhang, Linqi
    Wang, Xinquan
    [J]. NATURE, 2020, 581 (7807) : 215 - +
  • [39] Untangling the Evolution of the Receptor-Binding Motif of SARS-CoV-2
    Delaye, Luis
    Roman-Padilla, Lizbeth
    [J]. JOURNAL OF MOLECULAR EVOLUTION, 2024, 92 (03) : 329 - 337
  • [40] Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
    Jun Lan
    Jiwan Ge
    Jinfang Yu
    Sisi Shan
    Huan Zhou
    Shilong Fan
    Qi Zhang
    Xuanling Shi
    Qisheng Wang
    Linqi Zhang
    Xinquan Wang
    [J]. Nature, 2020, 581 : 215 - 220