Eigenvalue estimates for a class of elliptic differential operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space

被引:0
|
作者
Araujo Filho, Marcio C. [1 ]
Gomes, Jose N. V. [2 ]
机构
[1] Univ Fed Rondonia, Dept Matemat, Campus Ji Parana R Rio Amazonas 351, BR-76900726 Ji Parana, RO, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, Rod Washington Luiz,Km 235, BR-13565905 Sao Carlos, SP, Brazil
来源
关键词
Eigenvalue estimates; Elliptic operator; Riemannian Manifold; Gaussian soliton; TRACE IDENTITIES; INEQUALITIES; LAPLACIAN; HYPERSURFACES; BOUNDS;
D O I
10.1007/s00033-023-02054-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain eigenvalue estimates for a larger class of elliptic differential operators in divergence form on a bounded domain in a complete Riemannian manifold isometrically immersed in Euclidean space. As an application, we give eigenvalue estimates in the Gaussian shrinking soliton, and we find a domain that makes the behavior of these estimates similar to the estimates for the case of the Laplacian. Moreover, we also give an answer to the generalized conjecture of Polya.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Gradient Estimates for a Class of Elliptic and Parabolic Equations on Riemannian Manifolds
    Jie Wang
    Frontiers of Mathematics, 2023, 18 : 999 - 1024
  • [22] The principal eigenvalue and maximum principle for second order elliptic operators on Riemannian manifolds
    Padilla, P
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 205 (02) : 285 - 312
  • [23] Estimates of eigenvalues of an elliptic differential system in divergence form
    Araujo Filho, Marcio C.
    Gomes, Jose N., V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [24] Estimates of eigenvalues of an elliptic differential system in divergence form
    Marcio C. Araújo Filho
    José N. V. Gomes
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [25] SPECTRAL STABILITY ESTIMATES OF NEUMANN DIVERGENCE FORM ELLIPTIC OPERATORS
    Gol'dshtein, Vladimir
    Pchelintsev, Valerii
    Ukhlov, Alexander
    MATHEMATICAL REPORTS, 2021, 23 (1-2): : 131 - 147
  • [26] Spectral stability estimates of Dirichlet divergence form elliptic operators
    Vladimir Gol’dshtein
    Valerii Pchelintsev
    Alexander Ukhlov
    Analysis and Mathematical Physics, 2020, 10
  • [27] Spectral stability estimates of Dirichlet divergence form elliptic operators
    Gol'dshtein, Vladimir
    Pchelintsev, Valerii
    Ukhlov, Alexander
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [28] GRADIENT ESTIMATES AND LIOUVILLE THEOREMSFOR A CLASS OF ELLIPTIC EQUATION ON RIEMANNIAN MANIFOLDS
    Wang, Youde
    Zhang, Aiqi
    Zhao, Hongxing
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024,
  • [29] Separation Problem for Second Order Elliptic Differential Operators on Riemannian Manifolds
    Atia, H. A.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (02) : 229 - 240
  • [30] Fundamental tone estimates for elliptic operators in divergence form and geometric applications
    Bessa, Gregorio P.
    Jorge, Luquesio P.
    Lima, Barnabe P.
    Montenegro, Jose F.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2006, 78 (03): : 391 - 404