Gain of a High-Impedance Cavity Coupled to Strongly Driven Semiconductor Quantum Dots

被引:1
|
作者
Gu, Si -Si [1 ,2 ]
Xu, Yong-Qiang [1 ,2 ]
Wu, Rui [1 ,2 ]
Ye, Shu-Kun [1 ,2 ]
Lin, Ting [1 ,2 ]
Wang, Bao-Chuan [1 ,2 ]
Li, Hai-Ou [1 ,2 ,3 ]
Cao, Gang [1 ,2 ,3 ]
Guo, Guo-Ping [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
[4] Origin Quantum Comp Co Ltd, Hefei 230088, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
SPIN; PHOTON; QUBITS; ELECTRON;
D O I
10.1103/PhysRevApplied.19.054020
中图分类号
O59 [应用物理学];
学科分类号
摘要
The architecture of artificial atoms coupled to superconducting cavities allows the study of light-matter interactions and intriguing phenomena such as cavity gain implying photon generation. Here, we integrate a high-impedance cavity with a double quantum dot (DQD) in GaAs/(Al,Ga)As heterostructures, achieving a considerable DQD-cavity coupling strength and a relatively small cavity decay rate. By applying a strong drive to the DQD, we realize a population inversion and observe the cavity amplitude gain in multiple regions in the measured Landau-Zener-Stuckelberg-Majorana interference pattern. We further systematically investigate the dependence of cavity gain on the driving frequency and tunnel coupling strength of the DQD. The results show that the cavity gain is tunable, with a maximum value of approximately 1.16 in the measured range. Our experimental results are in good agreement with theoretical simulations and may provide an opportunity to implement on-chip microwave sources or microwave amplifiers in a controllable way.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Optical study of strongly coupled CdSe quantum dots
    Zhang, S. K.
    Myint, Thander
    Wang, W. B.
    Das, B. B.
    Perez-Paz, Noemi
    Lu, H.
    Tamargo, M. C.
    Shen, A.
    Alfano, R. R.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (03):
  • [22] Charge pumping in strongly coupled molecular quantum dots
    Haughian, Patrick
    Yap, Han Hoe
    Gong, Jiangbin
    Schmidt, Thomas L.
    PHYSICAL REVIEW B, 2017, 96 (19)
  • [23] A microscopic theory for optical gain in semiconductor quantum dots
    Lorke, M.
    Chow, W. W.
    Seebeck, J.
    Gartner, P.
    Jahnle, F.
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XV, 2007, 6468
  • [24] A Spin-Photon Interface Using Charge-Tunable Quantum Dots Strongly Coupled to a Cavity
    Luo, Zhouchen
    Sun, Shuo
    Karasahin, Aziz
    Bracker, Allan S.
    Carter, Samuel G.
    Yakes, Michael K.
    Gammon, Daniel
    Waks, Edo
    NANO LETTERS, 2019, 19 (10) : 7072 - 7077
  • [25] Kondo Memory in Driven Strongly Correlated Quantum Dots
    Zheng, Xiao
    Yan, YiJing
    Di Ventra, Massimiliano
    PHYSICAL REVIEW LETTERS, 2013, 111 (08)
  • [26] Cavity enhanced Faraday rotation of semiconductor quantum dots
    Li, Y. Q.
    Steuerman, D. W.
    Berezovsky, J.
    Seferos, D. S.
    Bazan, G. C.
    Awschalom, D. D.
    APPLIED PHYSICS LETTERS, 2006, 88 (19)
  • [27] Impurity effects on semiconductor quantum bits in coupled quantum dots
    Nguyen, Nga T. T.
    Das Sarma, S.
    PHYSICAL REVIEW B, 2011, 83 (23)
  • [28] Coherent manipulation of a strongly driven semiconductor quantum well
    Paspalakis, E
    Tsaousidou, M
    Terzis, AF
    PHYSICAL REVIEW B, 2006, 73 (12):
  • [29] Rabi oscillations in a strongly driven semiconductor quantum well
    Paspalakis, Emmanuel
    Tsaousidou, Margarita
    Terzis, Andreas F.
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (04)
  • [30] Theory of electron spectroscopies in strongly correlated semiconductor quantum dots
    Rontani, Massimo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (30-31): : 5311 - 5320