Gain of a High-Impedance Cavity Coupled to Strongly Driven Semiconductor Quantum Dots

被引:1
|
作者
Gu, Si -Si [1 ,2 ]
Xu, Yong-Qiang [1 ,2 ]
Wu, Rui [1 ,2 ]
Ye, Shu-Kun [1 ,2 ]
Lin, Ting [1 ,2 ]
Wang, Bao-Chuan [1 ,2 ]
Li, Hai-Ou [1 ,2 ,3 ]
Cao, Gang [1 ,2 ,3 ]
Guo, Guo-Ping [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
[4] Origin Quantum Comp Co Ltd, Hefei 230088, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
SPIN; PHOTON; QUBITS; ELECTRON;
D O I
10.1103/PhysRevApplied.19.054020
中图分类号
O59 [应用物理学];
学科分类号
摘要
The architecture of artificial atoms coupled to superconducting cavities allows the study of light-matter interactions and intriguing phenomena such as cavity gain implying photon generation. Here, we integrate a high-impedance cavity with a double quantum dot (DQD) in GaAs/(Al,Ga)As heterostructures, achieving a considerable DQD-cavity coupling strength and a relatively small cavity decay rate. By applying a strong drive to the DQD, we realize a population inversion and observe the cavity amplitude gain in multiple regions in the measured Landau-Zener-Stuckelberg-Majorana interference pattern. We further systematically investigate the dependence of cavity gain on the driving frequency and tunnel coupling strength of the DQD. The results show that the cavity gain is tunable, with a maximum value of approximately 1.16 in the measured range. Our experimental results are in good agreement with theoretical simulations and may provide an opportunity to implement on-chip microwave sources or microwave amplifiers in a controllable way.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Probing Two Driven Double Quantum Dots Strongly Coupled to a Cavity
    Gu, Si-Si
    Kohler, Sigmund
    Xu, Yong-Qiang
    Wu, Rui
    Jiang, Shun-Li
    Ye, Shu-Kun
    Lin, Ting
    Wang, Bao-Chuan
    Li, Hai-Ou
    Cao, Gang
    Guo, Guo-Ping
    PHYSICAL REVIEW LETTERS, 2023, 130 (23)
  • [2] High-impedance superconducting resonators and on-chip filters for circuit quantum electrodynamics with semiconductor quantum dots
    Zhang, X.
    Zhu, Z.
    Ong, N. P.
    Petta, J. R.
    PHYSICAL REVIEW APPLIED, 2024, 21 (01)
  • [3] Entanglement and bistability in coupled quantum dots inside a driven cavity
    Mitra, Arnab
    Vyas, Reeta
    PHYSICAL REVIEW A, 2010, 81 (01):
  • [4] Improving Optical Gain Performance in Semiconductor Quantum Dots via Coupled Quantum Shells
    Dias, Eva A.
    Saari, Jonathan I.
    Tyagi, Pooja
    Kambhampati, Patanjali
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (09): : 5407 - 5413
  • [5] Strongly capacitively coupled quantum dots
    Chan, IH
    Westervelt, RM
    Maranowski, KD
    Gossard, AC
    APPLIED PHYSICS LETTERS, 2002, 80 (10) : 1818 - 1820
  • [6] Semiconductor Cavity Quantum Electrodynamics with Single Quantum Dots
    Reitzenstein, S.
    Schneider, C.
    Muench, S.
    Kistner, C.
    Strauss, M.
    Huggenberger, A.
    Franeck, P.
    Weinmann, P.
    Kamp, M.
    Hoefling, S.
    Worschech, L.
    Forchel, A.
    ACTA PHYSICA POLONICA A, 2009, 116 (04) : 445 - 450
  • [7] Emergent quantum phase transition of a Josephson junction coupled to a high-impedance multimode resonator
    Giacomelli, Luca
    Ciuti, Cristiano
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [8] Time evolution of entanglement and bistability of two coupled quantum dots in a driven cavity
    Shiau, Hsiao-harng
    Mitra, Arnab
    Vyas, Reeta
    JOURNAL OF MODERN OPTICS, 2013, 60 (15) : 1273 - 1280
  • [9] Enhancement of discord and entanglement with detuning for two coupled quantum dots in a driven cavity
    Rawlinson, Willa
    Vyas, Reeta
    JOURNAL OF MODERN OPTICS, 2015, 62 (13) : 1061 - 1067
  • [10] On-Chip Microwave Filters for High-Impedance Resonators with Gate-Defined Quantum Dots
    Harvey-Collard, Patrick
    Zheng, Guoji
    Dijkema, Jurgen
    Samkharadze, Nodar
    Sammak, Amir
    Scappucci, Giordano
    Vandersypen, Lieven M. K.
    PHYSICAL REVIEW APPLIED, 2020, 14 (03):