Quantification of pulmonary involvement in COVID-19 pneumonia: an upgrade of the LungQuant software for lung CT segmentation

被引:0
|
作者
Lizzi, Francesca [1 ]
Postuma, Ian [2 ]
Brero, Francesca [2 ,3 ]
Cabini, Raffaella Fiamma [2 ,4 ]
Fantacci, Maria Evelina [1 ,5 ]
Lascialfari, Alessandro [2 ,3 ]
Oliva, Piernicola [6 ,7 ]
Rinaldi, Lisa [2 ,3 ]
Retico, Alessandra [1 ]
机构
[1] Natl Inst Nucl Phys INFN, Pisa Div, Pisa, Italy
[2] INFN, Pavia Div, Pavia, Italy
[3] Univ Pavia, Dept Phys, Pavia, Italy
[4] Univ Pavia, Dept Math, Pavia, Italy
[5] Univ Pisa, Dept Phys, Pisa, Italy
[6] Univ Sassari, Dept Chem Phys Math & Nat Sci, Sassari, Italy
[7] INFN, Cagliari Div, Cagliari, Italy
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2023年 / 138卷 / 04期
关键词
SCANS;
D O I
10.1140/epjp/s13360-023-03896-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Computed tomography (CT) scans are used to evaluate the severity of lung involvement in patients affected by COVID-19 pneumonia. Here, we present an improved version of the LungQuant automatic segmentation software (LungQuant v(2)), which implements a cascade of three deep neural networks (DNNs) to segment the lungs and the lung lesions associated with COVID-19 pneumonia. The first network (BB-net) defines a bounding box enclosing the lungs, the second one (U-net(1)) outputs the mask of the lungs, and the final one (U-net(2)) generates the mask of the COVID-19 lesions. With respect to the previous version (LungQuant v1), three main improvements are introduced: the BB-net, a new term in the loss function in the U-net for lesion segmentation and a post-processing procedure to separate the right and left lungs. The three DNNs were optimized, trained and tested on publicly available CT scans. We evaluated the system segmentation capability on an independent test set consisting of ten fully annotated CT scans, the COVID-19-CT-Seg benchmark dataset. The test performances are reported by means of the volumetric dice similarity coefficient (vDSC) and the surface dice similarity coefficient (sDSC) between the reference and the segmented objects. LungQuant v2 achieves a vDSC (sDSC) equal to 0.96 +/- 0.01 (0.97 +/- 0.01) and 0.69 +/- 0.08 (0.83 +/- 0.07) for the lung and lesion segmentations, respectively. The output of the segmentation software was then used to assess the percentage of infected lungs, obtaining a Mean Absolute Error (MAE) equal to 2%.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] COVID-19 CT Scan Lung Segmentation: How We Do It
    Negroni, Davide
    Zagaria, Domenico
    Paladini, Andrea
    Falaschi, Zeno
    Arcoraci, Anna
    Barini, Michela
    Carriero, Alessandro
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (03) : 424 - 431
  • [32] Label-Free Segmentation of COVID-19 Lesions in Lung CT
    Yao, Qingsong
    Xiao, Li
    Liu, Peihang
    Zhou, S. Kevin
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (10) : 2808 - 2819
  • [33] Different Lung Parenchyma Quantification Using Dissimilar Segmentation Software: A Multi-Center Study for COVID-19 Patients
    Risoli, Camilla
    Nicolo, Marco
    Colombi, Davide
    Moia, Marco
    Rapacioli, Fausto
    Anselmi, Pietro
    Michieletti, Emanuele
    Ambrosini, Roberta
    Di Terlizzi, Marco
    Grazioli, Luigi
    Colmo, Cristian
    Di Naro, Angelo
    Natale, Matteo Pio
    Tombolesi, Alessandro
    Adraman, Altin
    Tuttolomondo, Domenico
    Costantino, Cosimo
    Vetti, Elisa
    Martini, Chiara
    DIAGNOSTICS, 2022, 12 (06)
  • [34] CT imaging of pulmonary embolism in patients with COVID-19 pneumonia: a retrospective analysis
    Irene Espallargas
    Juan José Rodríguez Sevilla
    Diego Agustín Rodríguez Chiaradía
    Antonio Salar
    Guillem Casamayor
    Judit Villar-Garcia
    Anna Rodó-Pin
    Salvatore Marsico
    Santiago Carbullanca
    Diego Ramal
    Luis Alexander del Carpio
    Ángel Gayete
    José María Maiques
    Flavio Zuccarino
    European Radiology, 2021, 31 : 1915 - 1922
  • [35] CT imaging of pulmonary embolism in patients with COVID-19 pneumonia: a retrospective analysis
    Espallargas, Irene
    Rodriguez Sevilla, Juan Jose
    Rodriguez Chiaradia, Diego Agustin
    Salar, Antonio
    Casamayor, Guillem
    Villar-Garcia, Judit
    Rodo-Pin, Anna
    Marsico, Salvatore
    Carbullanca, Santiago
    Ramal, Diego
    Alexander del Carpio, Luis
    Gayete, Angel
    Maria Maiques, Jose
    Zuccarino, Flavio
    EUROPEAN RADIOLOGY, 2021, 31 (04) : 1915 - 1922
  • [36] Descriptions of Findings of Pulmonary Vascular Abnormalities at CT in COVID-19 Pneumonia Response
    Lang, Min
    Som, Avik
    Carey, Denston
    Reid, Nicholas
    Mendoza, Dexter P.
    Flores, Efren J.
    Li, Matthew D.
    Shepard, Jo-Anne O.
    Little, Brent P.
    RADIOLOGY-CARDIOTHORACIC IMAGING, 2020, 2 (04):
  • [37] The prevalence of single pulmonary nodules as the first sign of COVID-19 pneumonia in CT scans of patients suspected to COVID-19
    Shadkam, Atefeh
    Mandavi, Ali Akbar
    Raoufi, Masoomeh
    Mardanparvar, Hossein
    Fatehi, Zahra
    MEDICINA BALEAR, 2022, 37 (05): : 28 - 32
  • [38] CT pulmonary angiography in COVID-19 pneumonia: relationship between pulmonary embolism and disease severity
    Aya Yassin
    Maryam Ali Abdelkader
    Rehab M. Mohammed
    Ahmed M. Osman
    Egyptian Journal of Radiology and Nuclear Medicine, 52
  • [39] Low Sensitivity of Admission Lung US Compared to Chest CT for Diagnosis of Lung Involvement in a Cohort of 82 Patients with COVID-19 Pneumonia
    Quarato, Carla Maria Irene
    Mirijello, Antonio
    Lacedonia, Donato
    Russo, Raffaele
    Maggi, Michele Maria
    Rea, Gaetano
    Simeone, Annalisa
    Borelli, Cristina
    Feragalli, Beatrice
    Scioscia, Giulia
    Barbaro, Maria Pia Foschino
    Massa, Valentina
    De Cosmo, Salvatore
    Sperandeo, Marco
    MEDICINA-LITHUANIA, 2021, 57 (03): : 1 - 14
  • [40] CT pulmonary angiography in COVID-19 pneumonia: relationship between pulmonary embolism and disease severity
    Yassin, Aya
    Abdelkader, Maryam Ali
    Mohammed, Rehab M.
    Osman, Ahmed M.
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2021, 52 (01):