Quantification of pulmonary involvement in COVID-19 pneumonia: an upgrade of the LungQuant software for lung CT segmentation

被引:0
|
作者
Lizzi, Francesca [1 ]
Postuma, Ian [2 ]
Brero, Francesca [2 ,3 ]
Cabini, Raffaella Fiamma [2 ,4 ]
Fantacci, Maria Evelina [1 ,5 ]
Lascialfari, Alessandro [2 ,3 ]
Oliva, Piernicola [6 ,7 ]
Rinaldi, Lisa [2 ,3 ]
Retico, Alessandra [1 ]
机构
[1] Natl Inst Nucl Phys INFN, Pisa Div, Pisa, Italy
[2] INFN, Pavia Div, Pavia, Italy
[3] Univ Pavia, Dept Phys, Pavia, Italy
[4] Univ Pavia, Dept Math, Pavia, Italy
[5] Univ Pisa, Dept Phys, Pisa, Italy
[6] Univ Sassari, Dept Chem Phys Math & Nat Sci, Sassari, Italy
[7] INFN, Cagliari Div, Cagliari, Italy
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2023年 / 138卷 / 04期
关键词
SCANS;
D O I
10.1140/epjp/s13360-023-03896-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Computed tomography (CT) scans are used to evaluate the severity of lung involvement in patients affected by COVID-19 pneumonia. Here, we present an improved version of the LungQuant automatic segmentation software (LungQuant v(2)), which implements a cascade of three deep neural networks (DNNs) to segment the lungs and the lung lesions associated with COVID-19 pneumonia. The first network (BB-net) defines a bounding box enclosing the lungs, the second one (U-net(1)) outputs the mask of the lungs, and the final one (U-net(2)) generates the mask of the COVID-19 lesions. With respect to the previous version (LungQuant v1), three main improvements are introduced: the BB-net, a new term in the loss function in the U-net for lesion segmentation and a post-processing procedure to separate the right and left lungs. The three DNNs were optimized, trained and tested on publicly available CT scans. We evaluated the system segmentation capability on an independent test set consisting of ten fully annotated CT scans, the COVID-19-CT-Seg benchmark dataset. The test performances are reported by means of the volumetric dice similarity coefficient (vDSC) and the surface dice similarity coefficient (sDSC) between the reference and the segmented objects. LungQuant v2 achieves a vDSC (sDSC) equal to 0.96 +/- 0.01 (0.97 +/- 0.01) and 0.69 +/- 0.08 (0.83 +/- 0.07) for the lung and lesion segmentations, respectively. The output of the segmentation software was then used to assess the percentage of infected lungs, obtaining a Mean Absolute Error (MAE) equal to 2%.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Quantification of pulmonary involvement in COVID-19 pneumonia: an upgrade of the LungQuant software for lung CT segmentation
    Francesca Lizzi
    Ian Postuma
    Francesca Brero
    Raffaella Fiamma Cabini
    Maria Evelina Fantacci
    Alessandro Lascialfari
    Piernicola Oliva
    Lisa Rinaldi
    Alessandra Retico
    The European Physical Journal Plus, 138
  • [2] A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia
    Scapicchio, Camilla
    Chincarini, Andrea
    Ballante, Elena
    Berta, Luca
    Bicci, Eleonora
    Bortolotto, Chandra
    Brero, Francesca
    Cabini, Raffaella Fiamma
    Cristofalo, Giuseppe
    Fanni, Salvatore Claudio
    Fantacci, Maria Evelina
    Figini, Silvia
    Galia, Massimo
    Gemma, Pietro
    Grassedonio, Emanuele
    Lascialfari, Alessandro
    Lenardi, Cristina
    Lionetti, Alice
    Lizzi, Francesca
    Marrale, Maurizio
    Midiri, Massimo
    Nardi, Cosimo
    Oliva, Piernicola
    Perillo, Noemi
    Postuma, Ian
    Preda, Lorenzo
    Rastrelli, Vieri
    Rizzetto, Francesco
    Spina, Nicola
    Talamonti, Cinzia
    Torresin, Alberto
    Vanzulli, Angelo
    Volpi, Federica
    Neri, Emanuele
    Retico, Alessandra
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [3] A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia
    Camilla Scapicchio
    Andrea Chincarini
    Elena Ballante
    Luca Berta
    Eleonora Bicci
    Chandra Bortolotto
    Francesca Brero
    Raffaella Fiamma Cabini
    Giuseppe Cristofalo
    Salvatore Claudio Fanni
    Maria Evelina Fantacci
    Silvia Figini
    Massimo Galia
    Pietro Gemma
    Emanuele Grassedonio
    Alessandro Lascialfari
    Cristina Lenardi
    Alice Lionetti
    Francesca Lizzi
    Maurizio Marrale
    Massimo Midiri
    Cosimo Nardi
    Piernicola Oliva
    Noemi Perillo
    Ian Postuma
    Lorenzo Preda
    Vieri Rastrelli
    Francesco Rizzetto
    Nicola Spina
    Cinzia Talamonti
    Alberto Torresin
    Angelo Vanzulli
    Federica Volpi
    Emanuele Neri
    Alessandra Retico
    European Radiology Experimental, 7
  • [4] COVID-19 Pulmonary Involvement: Is Really an Interstitial Pneumonia?
    Boraschi, Piero
    ACADEMIC RADIOLOGY, 2020, 27 (06) : 900 - 900
  • [5] Three-Dimensional CT for Quantification of Longitudinal Lung and Pneumonia Variations in COVID-19 Patients
    Chen, Qiuying
    Chen, Lv
    Liu, Shuyi
    Chen, Luyan
    Li, Minmin
    Chen, Zhuozhi
    You, Jingjing
    Zhang, Bin
    Zhang, Shuixing
    FRONTIERS IN MEDICINE, 2021, 8
  • [6] Segmentation and quantification of COVID-19 infections in CT using pulmonary vessels extraction and deep learning
    João O. B. Diniz
    Darlan B. P. Quintanilha
    Antonino C. Santos Neto
    Giovanni L. F. da Silva
    Jonnison L. Ferreira
    Stelmo M. B. Netto
    José D. L. Araújo
    Luana B. Da Cruz
    Thamila F. B. Silva
    Caio M. da S. Martins
    Marcos M. Ferreira
    Venicius G. Rego
    José M. C. Boaro
    Carolina L. S. Cipriano
    Aristófanes C. Silva
    Anselmo C. de Paiva
    Geraldo Braz Junior
    João D. S. de Almeida
    Rodolfo A. Nunes
    Roberto Mogami
    M. Gattass
    Multimedia Tools and Applications, 2021, 80 : 29367 - 29399
  • [7] Segmentation and quantification of COVID-19 infections in CT using pulmonary vessels extraction and deep learning
    Diniz, Joao O. B.
    Quintanilha, Darlan B. P.
    Santos Neto, Antonino C.
    da Silva, Giovanni L. F.
    Ferreira, Jonnison L.
    Netto, Stelmo M. B.
    Araujo, Jose D. L.
    Da Cruz, Luana B.
    Silva, Thamila F. B.
    da S. Martins, Caio M.
    Ferreira, Marcos M.
    Rego, Venicius G.
    Boaro, Jose M. C.
    Cipriano, Carolina L. S.
    Silva, Aristofanes C.
    de Paiva, Anselmo C.
    Braz Junior, Geraldo
    de Almeida, Joao D. S.
    Nunes, Rodolfo A.
    Mogami, Roberto
    Gattass, M.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29367 - 29399
  • [8] CT features of pulmonary embolism in patients with COVID-19 pneumonia
    Ekici, M.
    Ekici, A.
    Kaygusuz, S.
    Inanc, F.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2023, 27 (09) : 4085 - 4097
  • [9] Pulmonary metastases of lung adenocarcinoma mimicking COVID-19 pneumonia
    Shiroyama, Takayuki
    Hirata, Haruhiko
    Nagatomo, Izumi
    Takeda, Yoshito
    Kumanogoh, Atsushi
    JOURNAL OF THORACIC DISEASE, 2020, 12 (10) : 6125 - 6126
  • [10] CT quantification of COVID-19 pneumonia extent to predict individualized outcome
    Berecova, Zuzana
    Juskanic, Dominik
    Hazlinger, Martin
    Uhnak, Marek
    Janega, Pavol
    Rudnay, Maros
    Hatala, Robert
    BRATISLAVA MEDICAL JOURNAL-BRATISLAVSKE LEKARSKE LISTY, 2024, 125 (03): : 159 - 165