Meshfree-based physics-informed neural networks for the unsteady Oseen equations

被引:0
|
作者
Peng, Keyi [1 ]
Yue, Jing [2 ]
Zhang, Wen [2 ]
Li, Jian [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710021, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Elect & Control Engn, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
physics-informed neural networks; the unsteady Oseen equation; convergence; small sample learning; FINITE-ELEMENT-METHOD; ALGORITHM;
D O I
10.1088/1674-1056/ac9cb9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations. Firstly, based on the ideas of meshfree and small sample learning, we only randomly select a small number of spatiotemporal points to train the neural network instead of forming a mesh. Specifically, we optimize the neural network by minimizing the loss function to satisfy the differential operators, initial condition and boundary condition. Then, we prove the convergence of the loss function and the convergence of the neural network. In addition, the feasibility and effectiveness of the method are verified by the results of numerical experiments, and the theoretical derivation is verified by the relative error between the neural network solution and the analytical solution.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
    彭珂依
    岳靖
    张文
    李剑
    ChinesePhysicsB, 2023, 32 (04) : 185 - 193
  • [2] Invariant Physics-Informed Neural Networks for Ordinary Differential Equations
    Arora, Shivam
    Bihlo, Alex
    Valiquette, Francis
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 24
  • [3] Physics-informed neural networks for parametric compressible Euler equations
    Wassing, Simon
    Langer, Stefan
    Bekemeyer, Philipp
    COMPUTERS & FLUIDS, 2024, 270
  • [4] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [5] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [7] Mean flow reconstruction of unsteady flows using physics-informed neural networks
    Sliwinski, Lukasz
    Rigas, Georgios
    DATA-CENTRIC ENGINEERING, 2023, 4 (01):
  • [8] Surrogate-Based Physics-Informed Neural Networks for Elliptic Partial Differential Equations
    Zhi, Peng
    Wu, Yuching
    Qi, Cheng
    Zhu, Tao
    Wu, Xiao
    Wu, Hongyu
    MATHEMATICS, 2023, 11 (12)
  • [9] Physics-informed neural networks for the shallow-water equations on the sphere
    Bihlo, Alex
    Popovych, Roman O.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 456
  • [10] Control of Partial Differential Equations via Physics-Informed Neural Networks
    Carlos J. García-Cervera
    Mathieu Kessler
    Francisco Periago
    Journal of Optimization Theory and Applications, 2023, 196 : 391 - 414