Generalized orthogonality equations in finite-dimensional normed spaces

被引:1
|
作者
Gryszka, Karol [1 ]
Wojcik, Pawel [1 ]
机构
[1] Pedag Univ Krakow, Inst Math, Podchorazych 2, PL-30084 Krakow, Poland
关键词
Functional equations; Normed space; Norm derivatives; Orthogonal equation; Smoothness; Rotundity; BANACH-SPACES; FUNCTIONAL-EQUATION;
D O I
10.1007/s43034-023-00264-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X, Y be real normed spaces and let p '(+), p '(-) be norm derivatives. In this work, we solve a system of functional equations{p '(+)( f(x), f(y)) = g(x)p '(+)(x, y),p '(-)( f (x), f (y)) = g(x)p '(-)(x, y),with unknown functions f : X -> Y, g : X -> R. Moreover, we give partial answer to open problem posed in 2010.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] 2-FARTHEST ORTHOGONALITY IN GENERALIZED 2-NORMED SPACES
    Abad, S. M. Mousav Shams
    Mazaheri, H.
    Dehghan, M. A.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2018, 24 (01) : 71 - 78
  • [42] ON SYMMETRY OF BIRKHOFF-JAMES ORTHOGONALITY OF LINEAR OPERATORS ON FINITE-DIMENSIONAL REAL BANACH SPACES
    Sain, Debmalya
    Ghosh, Puja
    Paul, Kallol
    OPERATORS AND MATRICES, 2017, 11 (04): : 1087 - 1095
  • [43] INNER AND OUTER J-RADII OF CONVEX-BODIES IN FINITE-DIMENSIONAL NORMED SPACES
    GRITZMANN, P
    KLEE, V
    DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (03) : 255 - 280
  • [44] On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces
    Javier Alonso
    Horst Martini
    Senlin Wu
    Aequationes mathematicae, 2012, 83 : 153 - 189
  • [45] On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces
    Alonso, Javier
    Martini, Horst
    Wu, Senlin
    AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 153 - 189
  • [46] EMBEDDINGS OF FINITE-DIMENSIONAL SPACES INTO FINITE PRODUCTS OF 1-DIMENSIONAL SPACES
    OLSZEWSKI, W
    TOPOLOGY AND ITS APPLICATIONS, 1991, 40 (01) : 93 - 99
  • [47] FINITE-DIMENSIONAL LOCALLY BOUNDED SPACES
    IYAHEN, SO
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1973, 6 (MAY): : 488 - 490
  • [48] Finite-Dimensional Bicomplex Hilbert Spaces
    Lavoie, Raphael Gervais
    Marchildon, Louis
    Rochon, Dominic
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (03) : 561 - 581
  • [49] On maps that preserve orthogonality in normed spaces
    Blanco, A.
    Turnsek, A.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 709 - 716
  • [50] OPERATORS REVERSING ORTHOGONALITY IN NORMED SPACES
    Chmielinski, Jacek
    ADVANCES IN OPERATOR THEORY, 2016, 1 (01): : 8 - 14