Image restoration fabric defect detection based on the dual generative adversarial network patch model

被引:3
|
作者
Cheng, Haoming [1 ]
Liang, Jiuzhen [1 ,2 ,3 ]
Liu, Hao [1 ]
机构
[1] Changzhou Univ, Sch Informat & Engn, Changzhou, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China
[3] Changzhou Univ, 21 Gehu Middle Rd, Changzhou 213164, Jiangsu, Peoples R China
关键词
Defect detection; generative adversarial networks; patch model; self-attention mechanism; AUTOMATED INSPECTION; CLASSIFICATION;
D O I
10.1177/00405175221144777
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
The training of supervised learning requires the use of ground truth, which is difficult to obtain in large quantities in production practice. Unsupervised learning requires only flawless and anomalous images of fabrics, but inevitably generates a great deal of background noise when performing result generation, which reduces the quality of results. To overcome these limitations, we propose a new approach: image restoration fabric defect detection based on the dual generative adversarial network patch model (DGPM). We train with a modified generative adversarial network using only flawless and anomalous images of the fabric. We propose the patch model to directly obtain specific information about fabric defects and add a self-attentive model to reduce the generation of background noise. The performance of the DGPM is evaluated on box-, star-, and dot-patterned fabric databases. The true positive rate (TPR) of the box type is 81. 56% and the f-measure is 62.69%, the TPR of the dot type is 83.72% and the f-measure is 67.33%, and the TPR of the star type is 79.79% and the f-measure is 64.65%.
引用
收藏
页码:2859 / 2876
页数:18
相关论文
共 50 条
  • [31] Large-area damage image restoration algorithm based on generative adversarial network
    Gang Liu
    Xiaofeng Li
    Jin Wei
    Neural Computing and Applications, 2021, 33 : 4651 - 4661
  • [32] Large-area damage image restoration algorithm based on generative adversarial network
    Liu, Gang
    Li, Xiaofeng
    Wei, Jin
    Neural Computing and Applications, 2021, 33 (10) : 4651 - 4661
  • [33] Image restoration of motion artifacts in cardiac arteries and vessels based on a generative adversarial network
    Deng, Fuquan
    Wan, Qian
    Zeng, Yingting
    Shi, Yanbin
    Wu, Huiying
    Wu, Yu
    Xu, Weifeng
    Mok, Greta S. P.
    Zhang, Xiaochun
    Hu, Zhanli
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (05) : 2755 - 2766
  • [34] Fast generative adversarial networks model for masked image restoration
    Cao, Zhiyi
    Niu, Shaozhang
    Zhang, Jiwei
    Wang, Xinyi
    IET IMAGE PROCESSING, 2019, 13 (07) : 1124 - 1129
  • [35] Image Dehazing Based on Generative Adversarial Network
    Huang S.
    Wang B.
    Li H.
    Yang Y.
    Hu W.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (11): : 990 - 1003
  • [36] Image Demosaicing Based on Generative Adversarial Network
    Luo, Jingrui
    Wang, Jie
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [37] ContourGAN: Image contour detection with generative adversarial network
    Yang, Hongju
    Li, Yao
    Yan, Xuefeng
    Cao, Fuyuan
    KNOWLEDGE-BASED SYSTEMS, 2019, 164 : 21 - 28
  • [38] Perceptual image quality using dual generative adversarial network
    Zareapoor, Masoumeh
    Zhou, Huiyu
    Yang, Jie
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18): : 14521 - 14531
  • [39] Perceptual image quality using dual generative adversarial network
    Masoumeh Zareapoor
    Huiyu Zhou
    Jie Yang
    Neural Computing and Applications, 2020, 32 : 14521 - 14531
  • [40] Fiber bundle image restoration using Conditional Generative Adversarial Network
    Xu, Baoteng
    Liu, Jialin
    Zhou, Wei
    Xiong, Daxi
    Yang, Xibin
    AOPC 2020: DISPLAY TECHNOLOGY; PHOTONIC MEMS, THZ MEMS, AND METAMATERIALS; AND AI IN OPTICS AND PHOTONICS, 2020, 11565