Image restoration fabric defect detection based on the dual generative adversarial network patch model

被引:3
|
作者
Cheng, Haoming [1 ]
Liang, Jiuzhen [1 ,2 ,3 ]
Liu, Hao [1 ]
机构
[1] Changzhou Univ, Sch Informat & Engn, Changzhou, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China
[3] Changzhou Univ, 21 Gehu Middle Rd, Changzhou 213164, Jiangsu, Peoples R China
关键词
Defect detection; generative adversarial networks; patch model; self-attention mechanism; AUTOMATED INSPECTION; CLASSIFICATION;
D O I
10.1177/00405175221144777
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
The training of supervised learning requires the use of ground truth, which is difficult to obtain in large quantities in production practice. Unsupervised learning requires only flawless and anomalous images of fabrics, but inevitably generates a great deal of background noise when performing result generation, which reduces the quality of results. To overcome these limitations, we propose a new approach: image restoration fabric defect detection based on the dual generative adversarial network patch model (DGPM). We train with a modified generative adversarial network using only flawless and anomalous images of the fabric. We propose the patch model to directly obtain specific information about fabric defects and add a self-attentive model to reduce the generation of background noise. The performance of the DGPM is evaluated on box-, star-, and dot-patterned fabric databases. The true positive rate (TPR) of the box type is 81. 56% and the f-measure is 62.69%, the TPR of the dot type is 83.72% and the f-measure is 67.33%, and the TPR of the star type is 79.79% and the f-measure is 64.65%.
引用
收藏
页码:2859 / 2876
页数:18
相关论文
共 50 条
  • [1] Unsupervised fabric defect detection based on a deep convolutional generative adversarial network
    Hu, Guanghua
    Huang, Junfeng
    Wang, Qinghui
    Li, Jingrong
    Xu, Zhijia
    Huang, Xingbiao
    TEXTILE RESEARCH JOURNAL, 2020, 90 (3-4) : 247 - 270
  • [2] Fabric defect image generation method based on the dual-stage W-net generative adversarial network
    Hu, Xuejuan
    Liang, Yifei
    Wang, Hengliang
    Tan, Yadan
    Liu, Shiqian
    Pan, Fudong
    Wu, Qingyang
    He, Zhengdi
    TEXTILE RESEARCH JOURNAL, 2024, 94 (13-14) : 1543 - 1557
  • [3] Vehicle radiation image restoration based on a generative adversarial network
    Leng Z.
    Sun Y.
    Tong J.
    Wang Z.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2022, 62 (10): : 1691 - 1696
  • [4] Restoration of motion blur image for detection robot by generative adversarial network
    Cui, Jifeng
    Han, Jin
    Journal of Network Intelligence, 2021, 6 (02): : 328 - 338
  • [5] Conditional image-to-image translation generative adversarial network (cGAN) for fabric defect data augmentation
    Mohammed, Swash Sami
    Clarke, Hülya Gökalp
    Neural Computing and Applications, 2024, 36 (32) : 20231 - 20244
  • [6] FabricGAN: an enhanced generative adversarial network for data augmentation and improved fabric defect detection
    Xu, Yiqin
    Zhi, Chao
    Wang, Shuai
    Chen, Jianglong
    Sun, Runjun
    Dong, Zijing
    Yu, Lingjie
    TEXTILE RESEARCH JOURNAL, 2024, 94 (15-16) : 1771 - 1785
  • [7] Masked contrastive generative adversarial network for defect detection of yarn-dyed fabric
    Zhang, Hongwei
    Lu, Zhidong
    Chen, Xiwei
    Lu, Shuai
    Yao, Le
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [8] Constrained adversarial loss for generative adversarial network-based faithful image restoration
    Kim, Dong-Wook
    Chung, Jae-Ryun
    Kim, Jongho
    Lee, Dae Yeol
    Jeong, Se Yoon
    Jung, Seung-Won
    ETRI JOURNAL, 2019, 41 (04) : 415 - 425
  • [9] Underwater image restoration based on perceptually optimized generative adversarial network
    Wang, Peng
    Chen, Haixiu
    Xu, Weihua
    Jin, Suqin
    JOURNAL OF ELECTRONIC IMAGING, 2020, 29 (03)
  • [10] Dunhuang murals image restoration method based on generative adversarial network
    Hui Ren
    Ke Sun
    Fanhua Zhao
    Xian Zhu
    Heritage Science, 12