A robust Kibria-Lukman estimator for linear regression model to combat multicollinearity and outliers

被引:9
|
作者
Majid, Abdul [1 ]
Ahmad, Shakeel [2 ]
Aslam, Muhammad [2 ]
Kashif, Muhammad [3 ]
机构
[1] Reg Off, Pakistan Bur Stat, Multan, Pakistan
[2] Bahauddin Zakariya Univ, Dept Stat, Multan, Pakistan
[3] Govt Coll Civil Lines, Dept Stat, Multan, Pakistan
来源
关键词
KL estimator; mean squared error; M-estimator; multicollinearity; outlier; ridge regression; RIDGE-REGRESSION; SIMULATION;
D O I
10.1002/cpe.7533
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
To circumvent the problem of multicollinearity in regression models, a ridge-type estimator is recently proposed in the literature, which is named as the Kibria-Lukman estimator (KLE). The KLE has better properties than the conventional ridge regression estimator. However, the presence of outliers in the data set may have some adverse effects on the KLE. To address this issue, the present article proposes a robust version of the KLE based on the M-estimator. This article also proposes some robust methods to estimate the shrinkage parameter k. The Monte Carlo simulation study and a real-life data is used to gauge the performance of the proposed methods where the mean squared error is used as the evaluation criterion. The numerical results witness the supremacy of the proposed estimator in the presence of outliers.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Robust-stein estimator for overcoming outliers and multicollinearity
    Lukman, Adewale F.
    Farghali, Rasha A.
    Kibria, B. M. Golam
    Oluyemi, Okunlola A.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [32] Robust-stein estimator for overcoming outliers and multicollinearity
    Adewale F. Lukman
    Rasha A. Farghali
    B. M. Golam Kibria
    Okunlola A. Oluyemi
    Scientific Reports, 13
  • [33] On a Robust Estimator in Heteroscedastic Regression Model in the Presence of Outliers
    Midi, Habshah
    Rana, Sohel
    Imon, A. H. M. R.
    WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL I, 2013, : 280 - +
  • [34] New quantile based ridge M-estimator for linear regression models with multicollinearity and outliers
    Suhail, Muhammad
    Chand, Sohail
    Aslam, Muhammad
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (04) : 1418 - 1435
  • [35] Estimation Parameters Using Bisquare Weighted Robust Ridge Regression BRLTS Estimator in the Presence of Multicollinearity and Outliers
    Pati, Kafi Dano
    Adnan, Robiah
    Rasheed, Bello Abdulkadir
    Alias, Muhammad M. D. J.
    ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 1750
  • [36] Efficiency of the QR class estimator in semiparametric regression models to combat multicollinearity
    Roozbeh, Mahdi
    Najarian, Mohammad
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (09) : 1804 - 1825
  • [37] A Double-Penalized Estimator to Combat Separation and Multicollinearity in Logistic Regression
    Guan, Ying
    Fu, Guang-Hui
    MATHEMATICS, 2022, 10 (20)
  • [38] A NEW UNBIASED ESTIMATOR OF A MULITPLE LINEAR REGRESSION MODEL OF THE CAPM IN CASE OF MULTICOLLINEARITY
    Pappas, Dimitrios
    Bisiotis, Konstantinos
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (05): : 1019 - 1032
  • [39] Condition-index based new ridge regression estimator for linear regression model with multicollinearity
    Dar, Irum Sajjad
    Chand, Sohail
    Shabbir, Maha
    Kibria, B. M. Golam
    KUWAIT JOURNAL OF SCIENCE, 2023, 50 (02) : 91 - 96
  • [40] Robust estimation of the distributed lag model with multicollinearity and outliers
    Majid, Abdul
    Aslam, Muhammad
    Ahmad, Shakeel
    Altaf, Saima
    Afzal, Saima
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 3933 - 3947