A feature fusion-based attention graph convolutional network for 3D classification and segmentation

被引:1
|
作者
Yang, Chengyong [1 ,3 ]
Wang, Jie [1 ]
Wei, Shiwei [2 ]
Yu, Xiukang [1 ]
机构
[1] Guilin Univ Technol, Sch Informat Sci & Engn, Guilin 541006, Guangxi, Peoples R China
[2] Guilin Univ Aerosp Technol, Sch Comp Sci & Engn, Guilin 541004, Guangxi, Peoples R China
[3] Guilin Univ Technol, Network & Informat Ctr, Guilin 541006, Guangxi, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2023年 / 31卷 / 12期
基金
中国国家自然科学基金;
关键词
3D point cloud; point cloud classification and segmentation; attention graph convolution; error feedback mechanism; feature fusion;
D O I
10.3934/era.2023373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Among all usual formats of representing 3D objects, including depth image, mesh and volumetric grid, point cloud is the most commonly used and preferred format, because it preserves the original geometric information in 3D space without any discretization and can provide a comprehensive understanding of the target objects. However, due to their unordered and unstructured nature, conventional deep learning methods such as convolutional neural networks cannot be directly applied to point clouds, which poses a challenge for extracting semantic features from them. This paper proposes a feature fusion algorithm based on attention graph convolution and error feedback, which considers global features, local features and the problem of the features loss during the learning process. Comparison experiments are conducted on the ModelNet40 and ShapeNet datasets to verify the performance of the proposed algorithm, and experimental results show that the proposed method achieves a classification accuracy of 93.1% and a part segmentation mIoU (mean Intersection over Union) of 85.4%. Our algorithm outperforms state-of-the-art algorithms, and effectively improves the accuracy of point cloud classification and segmentation with faster convergence speed.
引用
收藏
页码:7365 / 7384
页数:20
相关论文
共 50 条
  • [31] Lightweight Semantic Segmentation Network based on Attention Feature Fusion
    Kuang, Xianyan
    Liu, Ping
    Chen, Yixi
    Zhang, Jianhua
    ENGINEERING LETTERS, 2023, 31 (04) : 1584 - 1591
  • [32] Feature Fusion Network Based on Hybrid Attention for Semantic Segmentation
    Xie Xinchen
    Li, Chen
    Tian, Lihua
    2022 IEEE WORLD AI IOT CONGRESS (AIIOT), 2022, : 9 - 14
  • [33] 3D point cloud classification and segmentation based on dual attention and weighted dynamic graph convolution
    Xiao, Jian
    Wang, Xiaohong
    Li, Wei
    Yang, Yifei
    Luo, Ji
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (18): : 2823 - 2835
  • [34] Spatial Attention-Based 3D Graph Convolutional Neural Network for Sign Language Recognition
    Al-Hammadi, Muneer
    Bencherif, Mohamed A.
    Alsulaiman, Mansour
    Muhammad, Ghulam
    Mekhtiche, Mohamed Amine
    Abdul, Wadood
    Alohali, Yousef A.
    Alrayes, Tareq S.
    Mathkour, Hassan
    Faisal, Mohammed
    Algabri, Mohammed
    Altaheri, Hamdi
    Alfakih, Taha
    Ghaleb, Hamid
    SENSORS, 2022, 22 (12)
  • [35] Feature pyramid-based graph convolutional neural network for graph classification
    Lu, Mingming
    Xiao, Zhixiang
    Li, Haifeng
    Zhang, Ya
    Xiong, Neal N.
    JOURNAL OF SYSTEMS ARCHITECTURE, 2022, 128
  • [36] Retinal Vessel Segmentation Based on Dynamic Feature Graph Convolutional Network
    Miao, Linyi
    Feng, Li
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (15):
  • [37] Deep SpectralSpatial Feature Fusion-Based Multiscale Adaptable Attention Network for Hyperspectral Feature Extraction
    Yu, Wenbo
    Huang, He
    Shen, Gangxiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [38] Urban Traffic Congestion Level Prediction Using a Fusion-Based Graph Convolutional Network
    Feng, Rui
    Cui, Heqi
    Feng, Qiang
    Chen, Sixuan
    Gu, Xiaoning
    Yao, Baozhen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (12) : 14695 - 14705
  • [39] Spatial feature fusion in 3D convolutional autoencoders for lung tumor segmentation from 3D CT images
    Najeeb, Suhail
    Bhuiyan, Mohammed Imamul Hassan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [40] Enhancing the Local Graph Semantic Feature for 3D Point Cloud Classification and Segmentation
    Wang, Yong
    Tang, Xintong
    Yue, Chenke
    IEEE ACCESS, 2022, 10 : 74620 - 74628