Unraveling the Coupling Effect between Cathode and Anode toward Practical Lithium-Sulfur Batteries

被引:33
|
作者
Gao, Runhua [1 ,2 ]
Zhang, Mengtian [1 ,2 ]
Han, Zhiyuan [1 ,2 ]
Xiao, Xiao [1 ,2 ]
Wu, Xinru [1 ,2 ]
Piao, Zhihong [1 ,2 ]
Lao, Zhoujie [1 ,2 ]
Nie, Lu [1 ,2 ]
Wang, Shaogang [3 ]
Zhou, Guangmin [1 ,2 ]
机构
[1] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[3] Inst Met Sci & Technol, Chinese Acad Sci, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
binary descriptors; coupling effect; practical Li-S batteries; reaction heterogeneity; scalable electrodes; ENERGY-DENSITY;
D O I
10.1002/adma.202303610
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The localized reaction heterogeneity of the sulfur cathode and the uneven Li deposition on the Li anode are intractable issues for lithium-sulfur (Li-S) batteries under practical operation. Despite impressive progress in separately optimizing the sulfur cathode or Li anode, a comprehensive understanding of the highly coupled relationship between the cathode and anode is still lacking. In this work, inspired by the Butler-Volmer equation, a binary descriptor (IBD) assisting the rational structural design of sulfur cathode by simultaneously considering the mass-transport index (Imass) and the charge-transfer index (Icharge) is identified, and subsequently the relationship between IBD and the morphological evolution of Li anode is established. Guided by the IBD, a scalable electrode providing interpenetrated flow channels for efficient mass/charge transfer, full utilization of active sulfur, and mechanically elastic support for aggressive electrochemical reactions under practical conditions is reported. These characteristics induce a homogenous distribution of local current densities and reduced reaction heterogeneity on both sides of the cathode and anode. Impressive energy density of 318 Wh kg-1 and 473 Wh L-1 in an Ah-level pouch cell can be achieved by the design concept. This work offers a promising paradigm for unlocking the interaction between cathode and anode and designing high-energy practical Li-S batteries. The Butler-Volmer equation fundamentally describes the relationship between electrode overpotential and local current densities. Inspired by the equation, a binary descriptor (IBD) is proposed to guide the design of sulfur cathodes. This descriptor can evaluate the influence of mass transport and charge transfer on reaction kinetics, and unravel the coupling effect between sulfur cathode and Li anode.image
引用
收藏
页数:14
相关论文
共 50 条
  • [41] The strategies of advanced cathode composites for lithium-sulfur batteries
    Kuan Zhou
    XiaoJing Fan
    XiangFeng Wei
    JieHua Liu
    Science China Technological Sciences, 2017, 60 : 175 - 185
  • [42] Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure
    Fang, Ruopian
    Zhao, Shiyong
    Pei, Songfeng
    Qian, Xitang
    Hou, Peng-Xiang
    Cheng, Hui-Ming
    Liu, Chang
    Li, Feng
    ACS NANO, 2016, 10 (09) : 8676 - 8682
  • [43] How to Model the Cathode Area in Lithium-Sulfur Batteries?
    Abdulkadiroglu, Busra
    Bektas, Hilal
    Eroglu, Damla
    CHEMELECTROCHEM, 2022, 9 (04):
  • [44] A review of cathode for lithium-sulfur batteries: progress and prospects
    Jingyi Zhang
    Yulong Wu
    Yicun Xing
    Yu Li
    Tao Li
    Baozeng Ren
    Journal of Porous Materials, 2023, 30 : 1807 - 1819
  • [45] In situ wrapping of the cathode material in lithium-sulfur batteries
    Hu, Chenji
    Chen, Hongwei
    Shen, Yanbin
    Lu, Di
    Zhao, Yanfei
    Lu, An-Hui
    Wu, Xiaodong
    Lu, Wei
    Chen, Liwei
    NATURE COMMUNICATIONS, 2017, 8
  • [46] The strategies of advanced cathode composites for lithium-sulfur batteries
    Zhou, Kuan
    Fan, XiaoJing
    Wei, XiangFeng
    Liu, JieHua
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2017, 60 (02) : 175 - 185
  • [47] Ethynedithiol oligomers as cathode components of lithium-sulfur batteries
    Trofimov, B. A.
    Mal'kina, A. G.
    Dorofeev, I. A.
    Myachina, G. F.
    Rodionova, I. V.
    Vakul'skaya, T. I.
    Sinegovskaya, L. M.
    Skotheim, T. A.
    DOKLADY CHEMISTRY, 2007, 414 (1) : 125 - 127
  • [48] A review of cathode for lithium-sulfur batteries: progress and prospects
    Zhang, Jingyi
    Wu, Yulong
    Xing, Yicun
    Li, Yu
    Li, Tao
    Ren, Baozeng
    JOURNAL OF POROUS MATERIALS, 2023, 30 (06) : 1807 - 1819
  • [49] An aqueous dissolved polysulfide cathode for lithium-sulfur batteries
    Li, Na
    Weng, Zhe
    Wang, Yarong
    Li, Feng
    Cheng, Hui-Ming
    Zhou, Haoshen
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (10) : 3307 - 3312
  • [50] In situ wrapping of the cathode material in lithium-sulfur batteries
    Chenji Hu
    Hongwei Chen
    Yanbin Shen
    Di Lu
    Yanfei Zhao
    An-Hui Lu
    Xiaodong Wu
    Wei Lu
    Liwei Chen
    Nature Communications, 8