A Novel Framework for Credit Card Fraud Detection

被引:4
|
作者
Mniai, Ayoub [1 ]
Tarik, Mouna [1 ]
Jebari, Khalid [1 ]
机构
[1] Abdelmalek Essaadi Univ, LMA, FSTT, Tetouan 93000, Morocco
关键词
Metaheuristics; Particle swarm optimization; particle swarm optimization; machine learning; support vector data description; feature selection; unbalanced data; fraud detection; FEATURE-SELECTION; SEARCH;
D O I
10.1109/ACCESS.2023.3323842
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Credit card transactions have grown considerably in the last few years. However, this increase has led to significant financial losses around the world. More than that, processing the enormous amount of generated data becomes very challenging, making the datasets highly dimensional and unbalanced. This means the collected data is suffering from two major problems. It is characterized by a severe difference in observation frequency between fraud and non-fraud transactions, and it contains irrelevant, inappropriate, and correlated data that negatively affects their prediction performance. Consequently, it has attracted the interest of machine learning (ML), which has become a significant actor in fraud detection. ML has provided methods such as Logistic Regression (LR), Support vector machines (SVM), Decision Trees (DT), Random Forest (RF), and K-Nearest Neighbors (KNN). However, these methods cannot meet the outstanding performance required to detect and predict unusual fraud patterns. In this regard, the contribution of this paper is to propose a framework for fraud detection (FFD). At first, to overcome the unbalanced data problem, the framework uses an undersampling technique. Next, a feature selection (FS) mechanism is applied to select only relevant features. Then, a Support Vector Data Description (SVDD) is used to build the ML model. SVDD aims to create a tight boundary around regular data points to distinguish them from potential outliers or anomalies. In order to enhance optimization capability for its hyperparameters C and $\sigma $ , a modified version of the Particle Swarm Optimization (PSO) algorithm, Polynomial Self Learning PSO (PSLPSO), is proposed. As a result, the framework's effectiveness is shown in the experimental results on a real credit card transaction dataset.
引用
下载
收藏
页码:112776 / 112786
页数:11
相关论文
共 50 条
  • [41] AutoEncoder and LightGBM for Credit Card Fraud Detection Problems
    Du, Haichao
    Lv, Li
    Guo, An
    Wang, Hongliang
    SYMMETRY-BASEL, 2023, 15 (04):
  • [42] Credit Card Fraud Detection using Deep Learning
    Shenvi, Pranali
    Samant, Neel
    Kumar, Shubham
    Kulkarni, Vaishali
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [43] Distributed data mining in credit card fraud detection
    Chan, PK
    Fan, W
    Prodromidis, AL
    Stolfo, SJ
    IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1999, 14 (06): : 67 - 74
  • [44] Combination of Multiple Detectors for Credit Card Fraud Detection
    Salazar, Addisson
    Safont, Gonzalo
    Rodriguez, Alberto
    Vergara, Luis
    2016 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2016, : 138 - 143
  • [45] A customized classification algorithm for credit card fraud detection
    de Sa, Alex G. C.
    Pereira, Adriano C. M.
    Pappa, Gisele L.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 72 : 21 - 29
  • [46] Transaction aggregation as a strategy for credit card fraud detection
    C. Whitrow
    D. J. Hand
    P. Juszczak
    D. Weston
    N. M. Adams
    Data Mining and Knowledge Discovery, 2009, 18 : 30 - 55
  • [47] Sequence classification for credit-card fraud detection
    Jurgovsky, Johannes
    Granitzer, Michael
    Ziegler, Konstantin
    Calabretto, Sylvie
    Portier, Pierre-Edouard
    He-Guelton, Liyun
    Caelen, Olivier
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 100 : 234 - 245
  • [48] Reliable Logistic Regression for Credit Card Fraud Detection
    Hmidy, Yassine
    Mabrouk, Mouna Ben
    International Journal of Advanced Computer Science and Applications, 2024, 15 (11) : 67 - 76
  • [49] Transfer Learning Strategies for Credit Card Fraud Detection
    Lebichot, Bertrand
    Verhelst, Theo
    Le Borgne, Yann-Ael
    He-Guelton, Liyun
    Oble, Frederic
    Bontempi, Gianluca
    IEEE ACCESS, 2021, 9 : 114754 - 114766
  • [50] Credit Card Fraud Detection Using XGBoost Algorithm
    Abdulghani, Ahmed Qasim
    Ucan, Osman Nuri
    Alheeti, Khattab M. Ali
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 487 - 492