DeepCAC: a deep learning approach on DNA transcription factors classification based on multi-head self-attention and concatenate convolutional neural network

被引:5
|
作者
Zhang, Jidong [1 ]
Liu, Bo [2 ]
Wu, Jiahui [1 ]
Wang, Zhihan [1 ]
Li, Jianqiang [1 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Massey Univ, Sch Math & Computat Sci, Auckland 0745, New Zealand
关键词
Bioinformatics; Attention mechanism; DNA transcription factors sequence; Convolutional neural networks; BINDING PROTEINS; RNA;
D O I
10.1186/s12859-023-05469-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Understanding gene expression processes necessitates the accurate classification and identification of transcription factors, which is supported by high-throughput sequencing technologies. However, these techniques suffer from inherent limitations such as time consumption and high costs. To address these challenges, the field of bioinformatics has increasingly turned to deep learning technologies for analyzing gene sequences. Nevertheless, the pursuit of improved experimental results has led to the inclusion of numerous complex analysis function modules, resulting in models with a growing number of parameters. To overcome these limitations, it is proposed a novel approach for analyzing DNA transcription factor sequences, which is named as DeepCAC. This method leverages deep convolutional neural networks with a multi-head self-attention mechanism. By employing convolutional neural networks, it can effectively capture local hidden features in the sequences. Simultaneously, the multi-head self-attention mechanism enhances the identification of hidden features with long-distant dependencies. This approach reduces the overall number of parameters in the model while harnessing the computational power of sequence data from multi-head self-attention. Through training with labeled data, experiments demonstrate that this approach significantly improves performance while requiring fewer parameters compared to existing methods. Additionally, the effectiveness of our approach is validated in accurately predicting DNA transcription factor sequences.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] An interactive multi-head self-attention capsule network model for aspect sentiment classification
    She, Lina
    Gong, Hongfang
    Zhang, Siyu
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (07): : 9327 - 9352
  • [22] An interactive multi-head self-attention capsule network model for aspect sentiment classification
    Lina She
    Hongfang Gong
    Siyu Zhang
    The Journal of Supercomputing, 2024, 80 : 9327 - 9352
  • [23] Personalized multi-head self-attention network for news recommendation
    Zheng, Cong
    Song, Yixuan
    NEURAL NETWORKS, 2025, 181
  • [24] Text summarization based on multi-head self-attention mechanism and pointer network
    Qiu, Dong
    Yang, Bing
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (01) : 555 - 567
  • [25] A spatial-spectral fusion convolutional transformer network with contextual multi-head self-attention for hyperspectral image classification
    Wang, Wuli
    Sun, Qi
    Zhang, Li
    Ren, Peng
    Wang, Jianbu
    Ren, Guangbo
    Liu, Baodi
    NEURAL NETWORKS, 2025, 187
  • [26] MSASGCN : Multi-Head Self-Attention Spatiotemporal Graph Convolutional Network for Traffic Flow Forecasting
    Cao, Yang
    Liu, Detian
    Yin, Qizheng
    Xue, Fei
    Tang, Hengliang
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [27] Text summarization based on multi-head self-attention mechanism and pointer network
    Dong Qiu
    Bing Yang
    Complex & Intelligent Systems, 2022, 8 : 555 - 567
  • [28] A malicious network traffic detection model based on bidirectional temporal convolutional network with multi-head self-attention mechanism
    Cai, Saihua
    Xu, Han
    Liu, Mingjie
    Chen, Zhilin
    Zhang, Guofeng
    COMPUTERS & SECURITY, 2024, 136
  • [29] Detection of malicious URLs using Temporal Convolutional Network and Multi-Head Self-Attention mechanism
    Nguyet Quang Do
    Selamat, Ali
    Krejcar, Ondrej
    Fujita, Hamido
    APPLIED SOFT COMPUTING, 2025, 169
  • [30] Research on Enhanced Multi-head Self-Attention Social Recommendation Algorithm Based on Graph Neural Network
    Teng, Yue
    Yang, Kai
    IAENG International Journal of Computer Science, 2024, 51 (07) : 754 - 764