CI-property of C2p x Cn and C2p x C2q for digraphs

被引:0
|
作者
Kovacs, Istvan [1 ,2 ]
Muzychuk, Mikhail [3 ]
Palfy, Peter P. [4 ]
Ryabov, Grigory [5 ,6 ]
Somlai, Gabor [7 ]
机构
[1] Univ Primorska, UP IAM, Muzejski Trg 2, SI-6000 Koper, Slovenia
[2] Univ Primorska, UP FAMNIT, Glagoljaska Ulica 8, SI-6000 Koper, Slovenia
[3] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[4] Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
[5] Sobolev Inst Math, Acad Koptyug Ave 4, Novosibirsk 630090, Russia
[6] Novosibirsk State Tech Univ, K Marksa Ave 20, Novosibirsk 630073, Russia
[7] Eotvos Lorand Univ, Dept Algebra & Number Theory, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
关键词
Cayley graph; CI-property; Schur ring; ELEMENTARY ABELIAN-GROUP; ISOMORPHISM-PROBLEM; ADAMS CONJECTURE; SCHUR RINGS; RANK;
D O I
10.1016/j.jcta.2023.105738
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the direct product of two coprime order elementary abelian groups of rank two, as well as the direct product of a cyclic group of prime order and a cyclic group of square-free order are DCI-groups. The latter is a generalization of Muzychuk's result on cyclic groups (J. Combin. Theory Ser. A, 1995).(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条