Efficient mineralization of coal pyrolysis wastewater in a heterogeneous electro-Fenton system using a novel Fe3O4-LaFeO3/C/GF heterojunction cathode

被引:4
|
作者
Li, Jinxin [1 ]
Zhong, Dan [1 ,2 ]
Li, Feiyu [1 ]
Li, Kefei [1 ]
Ma, Wencheng [1 ,2 ]
Ma, Jun [1 ]
Zhang, Jingna [1 ]
Sun, Aoshuang [3 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Urban Water Resources Co Ltd, Natl Engn Res Ctr, Harbin 150090, Peoples R China
[3] Huahui Engn Design Grp Co Ltd, Shaoxing 312000, Peoples R China
关键词
Coal pyrolysis wastewater; Electro-Fenton; Perovskite; Density functional theory; DEGRADATION; ACTIVATION; OXIDATION; REGENERATION; GENERATION; REDUCTION; MECHANISM; CATALYST;
D O I
10.1016/j.seppur.2023.124046
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A bifunctional electro-Fenton (EF) cathode with Fe3O4-LaFeO3/C embedded graphite felt (GF) was synthesized through a hydrothermal process, which was used for in situ electrochemical formation of active oxygen species (ROS) for coal pyrolysis wastewater (CPW) removal. Experimental results illustrated that the mineralization efficiency of dimethylphenol (DMP) was achieved at 90.7 % within 150 min reaction. On the basis of quenching test and free radical detection, the center dot OH and center dot O-2(-) were the detectable ROS in the hetero-EF system for DMP removal. Meanwhile, the formed oxygen vacancies (OVs) and the redox of Fe2+/Fe3+ promoted the oxygen adsorption and H2O2 activation. Density functional theory (DFT) calculations further discussed that the Fe3O4-LaFeO3 interface possessed more downward spin density of states in the conduction band, resulting in a higher total density of states (DOS) value near the Fermi level. Moreover, the Fe3O4-LaFeO3/C/GF cathode displayed good recyclability with low metal ion dissolution for 5 times (99.5 % DMP removal and 78.6 % TOC removal) and underlying actual CPW application potential (80.2 % of COD removal and 100 % of total phenol (Tph) removal). Overall, this work invented a novel and stable bifunctional cathode for the efficient removal of refractory CPW in the hetero-EF system.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Efficient degradation of tetracycline by heterogeneous electro-Fenton process using Cu-doped Fe@Fe2O3: Mechanism and degradation pathway
    Luo, Ting
    Feng, Haopeng
    Tang, Lin
    Lu, Yue
    Tang, Wangwang
    Chen, Song
    Yu, Jiangfang
    Xie, Qingqing
    Ouyang, Xilian
    Chen, Zhaoming
    CHEMICAL ENGINEERING JOURNAL, 2020, 382
  • [22] Cu-doped Fe2O3 nanoparticles/etched graphite felt as bifunctional cathode for efficient degradation of sulfamethoxazole in the heterogeneous electro-Fenton process
    Qi, Haiqiang
    Sun, Xiuping
    Sun, Zhirong
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [23] Heterogeneous electro-Fenton oxidation of azo dye methyl orange catalyzed by magnetic Fe3O4 nanoparticles
    Jiang, Hao
    Sun, Yabing
    Feng, Jingwei
    Wang, Jian
    WATER SCIENCE AND TECHNOLOGY, 2016, 74 (05) : 1116 - 1126
  • [24] Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: High activity, wide pH range and catalytic mechanism
    Zhao, Hongying
    Wang, Yujing
    Wang, Yanbin
    Cao, Tongcheng
    Zhao, Guohua
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 125 : 120 - 127
  • [25] Heterogeneous electro-Fenton oxidation of catechol catalyzed by nano-Fe3O4: kinetics with the Fermi's equation
    Hou, Baolin
    Han, Hongjun
    Jia, Shengyong
    Zhuang, Haifeng
    Xu, Peng
    Wang, Dexin
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2015, 56 : 138 - 147
  • [26] Oxidation-precipitation of magnetic Fe3O4/AC nanocomposite as a heterogeneous catalyst for electro-Fenton treatment
    Nazari, Pegah
    Askari, Neda
    Setayesh, Shahrbanoo
    CHEMICAL ENGINEERING COMMUNICATIONS, 2020, 207 (05) : 665 - 675
  • [27] Imidacloprid degradation by electro-Fenton process using composite Fe3O4–Mn3O4 nanoparticle catalyst
    Duc Dat Duc Nguyen
    Khanh An Huynh
    Xuan Hoan Nguyen
    Tan Phong Nguyen
    Research on Chemical Intermediates, 2020, 46 : 4823 - 4840
  • [28] GAC@Fe3O4, LDHs@Fe3O4 and GO@Fe3O4 applied for tetracycline hydrochloride removal in three-dimensional heterogeneous electro-Fenton process
    Lv, Dandan
    Wang, Yan
    Li, Hui-qiang
    DESALINATION AND WATER TREATMENT, 2021, 213 : 328 - 342
  • [29] Study on the degradation performance of coking wastewater using an in-situ enhanced Fe2+/Fe3+ cycle dual-cathode Electro-Fenton system
    Zhao, Chengwang
    Ran, Yufang
    Gong, Yao
    Hong, Chen
    Xing, Yi
    Sun, Yunxiao
    Wang, Hao
    Ling, Wei
    Wang, Yijie
    Feng, Weibo
    Hou, Jiachen
    Zhai, Xinlin
    Liu, Chenran
    Journal of Environmental Chemical Engineering, 2024, 12 (06):
  • [30] Heterogeneous electro-Fenton process by Nano-Fe3O4 for catalytic degradation of amoxicillin: Process optimization using response surface methodology
    Kalantary, Roshanak Rezaei
    Farzadkia, Mahdi
    Kermani, Majid
    Rahmatinia, Massuomeh
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2018, 6 (04): : 4644 - 4652