Existence and multiplicity of solutions to magnetic Kirchhoff equations in Orlicz-Sobolev spaces

被引:3
|
作者
Ochoa, Pablo [1 ]
机构
[1] Univ Nacl Cuyo & Juan A Maza, CONICET, Parque Gral, RA-5500 San Martin, Mendoza, Argentina
关键词
Fractional magnetic operators (primary); Orlicz-Sobolev spaces; g-Laplace operator; Schrodinger-Kirchhoff equations; SCHRODINGER-EQUATION; EMBEDDING-THEOREMS;
D O I
10.1007/s13540-023-00135-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of weak solutions to a general type of Kirchhoff equations in magnetic fractional Orlicz-Sobolev spaces. Specifically, we appeal to Critical Point Theory to prove the existence of non-trivial solutions under the so-called Ambrosetti-Rabinowitz condition. We also state the existence of ground-state solutions. Moreover, multiplicity results which yield the existence of an unbounded sequence of solutions are also provided. Finally, we show existence under a weak-type Ambrosetti-Rabinowitz condition formulated in the framework of Orlicz spaces.
引用
收藏
页码:800 / 836
页数:37
相关论文
共 50 条
  • [21] MULTIPLICITY OF SOLUTIONS FOR NON-HOMOGENEOUS NEUMANN PROBLEMS IN ORLICZ-SOBOLEV SPACES
    Heidarkhani, Shapour
    Ferrara, Massimiliano
    Caristi, Giuseppe
    Henderson, Johnny
    Salari, Amjad
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [22] Existence and multiplicity results for non-homogeneous Neumann problems in Orlicz-Sobolev spaces
    Shokooh, Saeid
    Graef, John R.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (02) : 339 - 351
  • [23] Existence and multiplicity results for non-homogeneous Neumann problems in Orlicz-Sobolev spaces
    Saeid Shokooh
    John R. Graef
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 339 - 351
  • [24] MULTIPLICITY OF SOLUTIONS FOR QUASILINEAR EQUATIONS INVOLVING CRITICAL ORLICZ-SOBOLEV NONLINEAR TERMS
    Santos, Jefferson A.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [25] Existence and multiplicity of solutions for a Dirichlet problem in fractional Orlicz–Sobolev spaces
    Pablo Ochoa
    Analía Silva
    Maria José Suarez Marziani
    Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 21 - 47
  • [26] Magnetic fractional order Orlicz-Sobolev spaces
    Fernandez Bonder, Julian
    Salort, Ariel M.
    STUDIA MATHEMATICA, 2021, 259 (01) : 1 - 24
  • [27] Existence of Solutions to a Semilinear Elliptic System Through Generalized Orlicz-Sobolev Spaces
    Hsini, M.
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 23 (02): : 168 - 193
  • [28] EXISTENCE OF WEAK SOLUTIONS FOR OBSTACLE PROBLEMS WITH VARIABLE GROWTH IN ORLICZ-SOBOLEV SPACES
    Mouad Allalou
    Said Ait Temghart
    Abderahmane Raji
    Journal of Mathematical Sciences, 2025, 289 (2) : 155 - 167
  • [29] An existence result of entropy solutions to elliptic problems in generalized Orlicz-Sobolev spaces
    Bourahma, M.
    Benkirane, A.
    Bennouna, J.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 481 - 504
  • [30] Existence of three solutions for quasilinear elliptic equations: an Orlicz-Sobolev space setting
    Fei Fang
    Zhong Tan
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 287 - 296