Effects of biochar addition on greenhouse gas emissions during freeze-thaw cycles in a black soil region, Northeast China

被引:7
|
作者
Wang, Lihong [1 ,2 ]
Liu, Hui [3 ]
Li, Hongyu [4 ]
Yang, Aizheng [1 ,2 ]
Zhang, Zuowei [1 ,2 ]
Wang, Lijun [2 ]
机构
[1] Northeast Agr Univ, Sch Water Conservancy & Civil Engn, Harbin, Peoples R China
[2] Northeast Agr Univ, Key Lab Efficient Use Agr Water Resources, Minist Agr & Rural Affairs Peoples Republ China, Harbin, Peoples R China
[3] Northeast Agr Univ, Coll Arts & Sci, Harbin, Peoples R China
[4] Northeast Agr Univ, Coll Agr, Harbin, Peoples R China
关键词
biochar application rate; freeze-thaw cycles; greenhouse gas emissions; soil properties; NITROUS-OXIDE FLUXES; SANDY LOAM SOIL; N2O EMISSIONS; CARBON-DIOXIDE; SNOW DEPTH; CO2; METHANE; SORPTION; STRAW; MECHANISM;
D O I
10.1111/sum.12858
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
As global warming intensifies, the soil environment in middle to high latitudes will undergo more extensive and frequent freeze-thaw cycles (FTCs), which will significantly affect the carbon and nitrogen cycles of soil ecosystems and aggravate greenhouse gas (GHG) emissions. Biochar can increase soil organic carbon storage and mitigate climate change. To effectively control GHG emissions, soil supplemented with biochar at different application rates (0%, 2%, 4% and 6% [w/w]) under different numbers of FTCs (0, 3, 6, 9, and 12) was selected as the research object. The soil GHG emission characteristics in different experimental treatments and their relationships with soil physical and chemical properties were determined. Our results showed that N2O and CO2 emissions were promoted during FTCs, with values of 3.13-50.37 and 16.22-135.50 mu g m(-2) h(-1), respectively. The order of N2O and CO2 emissions with respect to biochar application rate was as follows: 2% > 0% > 4% > 6%. CH4 emissions were negative during FTCs, varying from -1.62 to -10.59 mu g m(-2) h(-1), and negative CH4 emissions were promoted by biochar. Correlation analysis showed that N2O, CO2 and CH4 emissions were significantly correlated with pH, soil moisture and soil organic matter (SOM), total nitrogen (TN) and NH4+$$ {\mathrm{NH}}_4<^>{+} $$-N contents (p < .01). The conceptual path model demonstrated that GHG emissions were significantly influenced by FTCs, moisture, SOM and biochar application rate. Our results indicate that the effects of FTCs on GHG emissions were greater than those of biochar application. Biochar application rates of 4% or 6% should be considered in the future to reduce soil GHG emissions in the black soil region of Northeast China. Our results can help provide a theoretical basis and effective strategy to reduce soil GHG emissions during FTCs in seasonally frozen regions.
引用
收藏
页码:134 / 146
页数:13
相关论文
共 50 条
  • [41] Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles
    Steven K. Schmidt
    Lara Vimercati
    Journal of Microbiology, 2019, 57 : 243 - 251
  • [42] Experimental Study on the Effects of Freeze-Thaw Cycles on Strength and Microstructure of Xining Region Loess in China
    Xie, Banglong
    Zhang, Wuyu
    Sun, Xianglong
    Huang, Yuling
    Liu, Leqing
    BUILDINGS, 2022, 12 (06)
  • [43] Effects of freeze-thaw cycles on High Arctic soil bacterial communities
    Lim, P. P.
    Pearce, D. A.
    Convey, P.
    Lee, L. S.
    Chan, K. G.
    Tan, G. Y. A.
    POLAR SCIENCE, 2020, 23
  • [44] Characteristics of soil freeze-thaw cycles and their effects on water enrichment in the rhizosphere
    Ala Musa
    Liu Ya
    Wang Anzhi
    Niu Cunyang
    GEODERMA, 2016, 264 : 132 - 139
  • [45] Effects of Freeze-Thaw Cycles on the Mechanical Properties and Microstructure of a Dispersed Soil
    Zhang, Shurui
    Xu, Xin
    Dong, Xiaoqiang
    Lei, Haomin
    Sun, Xun
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [46] Characterization of seasonal freeze-thaw and potential impacts on soil erosion in northeast China
    Zhao, Yusen
    Wang, Enheng
    Cruse, Richard M.
    Chen, Xiangwei
    CANADIAN JOURNAL OF SOIL SCIENCE, 2012, 92 (03) : 567 - 571
  • [47] Effects of successive soil freeze-thaw cycles on nitrification potential of soils
    Yanai, Y
    Toyota, K
    Okazaki, M
    SOIL SCIENCE AND PLANT NUTRITION, 2004, 50 (06) : 831 - 837
  • [48] Spatiotemporal variations of freeze-thaw erosion risk during 1991-2020 in the black soil region, northeastern China
    Zhai, Yuyu
    Fang, Haiyan
    ECOLOGICAL INDICATORS, 2023, 148
  • [49] The effects of freeze-thaw cycles at different initial soil water contents on soil erodibility in Chinese Mollisol region
    Wang, Lei
    Zuo, Xiaofeng
    Zheng, Fenli
    Wilson, Glenn, V
    Zhang, Xunchang J.
    Wang, Yifei
    Fu, Han
    CATENA, 2020, 193
  • [50] The coupling effects of freeze-thaw cycles and salinization due to snowfall on the rammed earth used in historical freeze-thaw cycles relics in northwest China
    Cui, Kai
    Wu, Guopeng
    Du, Yumin
    An, Xinyue
    Wang, Zelin
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2019, 160 : 288 - 299