Development of Cryogenic Systems for Astronomical Research

被引:1
|
作者
Balega, Yuri [1 ]
Bolshakov, Oleg [2 ]
Chernikov, Aleksandr [2 ,3 ]
Gunbina, Aleksandra [2 ,4 ]
Edelman, Valerian [5 ]
Efimova, Mariya [2 ]
Eliseev, Aleksandr [2 ]
Krasilnikov, Artem [1 ,2 ]
Lapkin, Igor [2 ]
Lesnov, Ilya [2 ]
Mansfeld, Mariya [1 ,2 ]
Markina, Mariya [4 ,5 ]
Pevzner, Evgenii [2 ]
Shitov, Sergey [4 ,6 ]
Smirnov, Andrey [7 ]
Tarasov, Mickhail [4 ]
Tyatushkin, Nickolay [2 ]
Vdovin, Anton [1 ,2 ]
Vdovin, Vyacheslav [1 ,2 ,7 ]
机构
[1] Special Astrophys Observ RAS, Nizhnii Arkhyz 369167, Russia
[2] AV Gaponov Grekhov Inst Appl Phys RAS, Nizhnii Novgorod 603600, Russia
[3] Joint Inst Nucl Res, Moscow 141980, Russia
[4] Kotelnikov Inst Radio Engn & Elect RAS, Moscow 101990, Russia
[5] PL Kapitza Inst Phys Problems RAS, Moscow 119334, Russia
[6] Natl Univ Sci & Technol MISIS, Lab Cryoelectron Syst, Moscow 119049, Russia
[7] PN Lebedev Phys Inst RAS, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
radio astronomy; cryogenic receivers; cryogenic systems; radio waves; IR and optics ranges; terahertz range; CYCLE DILUTION REFRIGERATOR; MILLIMETER; REFLECTIVITY;
D O I
10.3390/photonics11030257
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The article presents a brief review of cooling systems that ensure various temperature levels (from 0.1 K to 230 K) for radio astronomical receivers of photonic and electronic (or optical and radio) devices. The features of various cooling levels and the requirements for the design of the cooling systems are considered in detail, as well as the approaches to designing interfaces for cooled receivers: vacuum, cryogenic, electrical, mechanical, optical, and other interfaces required for effective operation. The presented approaches to design are illustrated by a series of joint developments of the authors carried out over the past 45 years, including those produced over the past year.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] Stages of development of cryogenic systems for space rocket technology
    Gorbatskii, YV
    Domashenko, AM
    Krishtal, VN
    CHEMICAL AND PETROLEUM ENGINEERING, 2002, 38 (9-10) : 594 - 598
  • [22] Stages of Development of Cryogenic Systems for Space Rocket Technology
    Yu. V. Gorbatskii
    A. M. Domashenko
    V. N. Krishtal
    Chemical and Petroleum Engineering, 2002, 38 : 594 - 598
  • [23] Aid to astronomical research
    Pickering, EC
    SCIENCE, 1915, 41 : 82 - 85
  • [24] ASTRONOMICAL RESEARCH LITERATURE
    KEMP, DA
    JOURNAL OF DOCUMENTATION, 1967, 23 (03) : 248 - &
  • [25] The endowment of astronomical research
    Pickering, EC
    SCIENCE, 1904, 20 : 292 - 299
  • [26] Current state and development of the minor planets research in Nikolaev Astronomical Observatory
    Hudkova, Lyudmila
    Ivantsov, Anatoliy
    Pinigin, Gennadiy
    Shulga, Alexander
    PLANETARY AND SPACE SCIENCE, 2008, 56 (14) : 1835 - 1838
  • [27] A multi-purpose cryogenic test facility for astronomical instrumentation
    March, Stephen A.
    Glauser, Adrian M.
    Baer, Marcel
    Patapis, Polychronis
    ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION III, 2018, 10706
  • [28] Cryogenic bolometers for astronomical observations in the sub-mm range
    Anders, Solveig
    May, Torsten
    Zakosarenko, Vyatcheslav
    Peiselt, Katja
    Heinz, Erik
    Starkloff, Michael
    Zieger, Gabriel
    Kreysa, Ernst
    Siringo, Giorgio
    Meyer, Hans-Georg
    MICROELECTRONIC ENGINEERING, 2011, 88 (08) : 2205 - 2207
  • [29] First astronomical application of a cryogenic transition edge sensor spectrophotometer
    Romani, RW
    Miller, AJ
    Cabrera, B
    Figueroa-Feliciano, E
    Nam, SW
    ASTROPHYSICAL JOURNAL, 1999, 521 (02): : L153 - L156
  • [30] The development and experimental research of a cryogenic internal cooling turning tool
    Gan, Yongquan
    Wang, Yongqing
    Liu, Kuo
    Wang, Siqi
    Yu, Qingbo
    Che, Chang
    Liu, Haibo
    JOURNAL OF CLEANER PRODUCTION, 2021, 319