SEMITOTAL DOMINATION IN CLAW-FREE GRAPHS

被引:0
|
作者
Chen, Jie [1 ]
Liang, Yi-Ping [1 ]
Xu, Shou-Jun [1 ]
机构
[1] Lanzhou Univ, Gansu Ctr Appl Math, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
semitotal domination; minimum degree; claw-free graphs;
D O I
10.7151/dmgt.2512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In an isolate-free graph G, a subset S of vertices is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number of G, denoted by 7t2(G), is the minimum cardinality of a semitotal dominating set in G. We prove that if G is a connected claw-free graph of order n with minimum degree delta(G) ,, 2 and is not one of fourteen exceptional graphs (ten of which are cycles), then 7t2(G) 5 37 n, and we also characterize the graphs achieving equality, which are an infinite family of graphs. In particular, if we restrict (2014) 67-81].
引用
收藏
页码:1585 / 1605
页数:21
相关论文
共 50 条
  • [41] Loop Zero Forcing and Grundy Domination in Planar Graphs and Claw-Free Cubic Graphs
    Domat, Alex
    Kuenzel, Kirsti
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [42] Pancyclicity in claw-free graphs
    Gould, RJ
    Pfender, F
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 151 - 160
  • [43] Claw-free graphs - A survey
    Faudree, R
    Flandrin, E
    Ryjacek, Z
    DISCRETE MATHEMATICS, 1997, 164 (1-3) : 87 - 147
  • [44] -Connectivity of Claw-Free Graphs
    Huang, Ziwen
    Li, Xiangwen
    Ma, Jianqing
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 123 - 140
  • [45] Pancyclism in Claw-free Graphs
    陆玫
    俞正光
    Tsinghua Science and Technology, 1998, (04) : 1218 - 1220
  • [46] Triangles in claw-free graphs
    Wang, H
    DISCRETE MATHEMATICS, 1998, 187 (1-3) : 233 - 244
  • [47] Minimal claw-free graphs
    Dankelmann, P.
    Swart, Henda C.
    van den Berg, P.
    Goddard, W.
    Plummer, M. D.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (03) : 787 - 798
  • [48] FACTORS OF CLAW-FREE GRAPHS
    LONC, Z
    RYJACEK, Z
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1991, 41 (01) : 120 - 130
  • [49] CIRCUMFERENCES OF CLAW-FREE GRAPHS
    SUN Zhiren
    WU Zhengsheng (School of Mathematics and Computer Science
    Systems Science and Mathematical Sciences, 2000, (02) : 225 - 225
  • [50] ON HAMILTONIAN CLAW-FREE GRAPHS
    FLANDRIN, E
    FOUQUET, JL
    LI, H
    DISCRETE MATHEMATICS, 1993, 111 (1-3) : 221 - 229