Preparation of hierarchical porous microspheres composite phase change material for thermal energy storage concrete in buildings

被引:13
|
作者
Li, Daokui [1 ]
Tang, Yili [2 ]
Zuo, Xiaochao [3 ,4 ,5 ]
Zhao, Xiaoguang [1 ]
Zhang, Xinyi [3 ,4 ,5 ]
Yang, Huaming [1 ,3 ,4 ,5 ]
机构
[1] Cent South Univ, Sch Minerals Proc & Bioengn, Hunan Key Lab Mineral Mat & Applicat, Changsha 410083, Peoples R China
[2] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[3] China Univ Geosci, Engn Res Ctr Nanogeomat, Minist Educ, Wuhan 430074, Peoples R China
[4] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Peoples R China
[5] China Univ Geosci, Key Lab Funct Geomat China Nonmetall Minerals Ind, Wuhan 430074, Peoples R China
关键词
Thermal energy storage; Hierarchical porous microspheres; Phase change material; Energy storage concrete; MIXED ALCOHOLS SYNTHESIS; CEMENT-BASED COMPOSITE; CONDUCTIVITY; PERFORMANCE;
D O I
10.1016/j.clay.2022.106771
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phase change materials with high latent heat significantly reduce building energy consumption. However, the serious leakage issue, low thermal conductivity, and the poor photothermal response utterly hinder their wide application in architecture. We reported an effective strategy for constructing hierarchical porous composite microspheres (PCN) through spray drying, calcination, and acid activation, using palygorskite (Pal) as the raw material. PCN presented a spherical hierarchical porous structure constructed by crosslinking Pal nanofibers and cellulose nanocrystals in a particular proportion. Paraffin-PCN (P-PCN) composite phase change materials (PCMs) with high shape stability, excellent photothermal conversion ability and latent heat storage capacity were synthesized. The heat preservation time of the P-PCN natural cooling from 35 degrees C to 30 degrees C is approximately twice that of the P-Pal. The P-PCN indicates obvious advantages in building thermal management, with the melting enthalpy promoted to 130.2 J/g. Further, the P-PCN-based building materials (P-PCN-B) with the P-PCN and the building aggregate maintain superior light-thermal energy conversion and thermal properties after multiple cycles. The P-PCN-B indicates outstanding mechanical properties (compression strength reaching 14.2 MPa) and flame-retarded properties. This work provides an innovative design strategy for developing multi-functional intelligent energy storage concrete and paves the way for the sustainable utilization of energy storage materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A polyethylene glycol/hydroxyapatite composite phase change material for thermal energy storage
    Wang, Yazhou
    Liang, Daxin
    Liu, Feng
    Zhang, Wenbo
    Di, Xin
    Wang, Chengyu
    APPLIED THERMAL ENGINEERING, 2017, 113 : 1475 - 1482
  • [42] 1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage
    Tang, Jia
    Yang, Mu
    Yu, Fang
    Chen, Xingyu
    Tan, Li
    Wang, Ge
    APPLIED ENERGY, 2017, 187 : 514 - 522
  • [43] A thermal energy storage composite by incorporating microencapsulated phase change material into wood
    Wang, Wenbin
    Cao, Huimin
    Liu, Jingyi
    Jia, Shifang
    Ma, Lin
    Guo, Xi
    Sun, Weisheng
    RSC ADVANCES, 2020, 10 (14) : 8097 - 8103
  • [44] Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage
    Zhang, Xialan
    Lin, Qilang
    Luo, Huijun
    Luo, Shiyuan
    APPLIED ENERGY, 2020, 260
  • [45] Preparation and thermal energy storage properties of D-Mannitol/expanded graphite composite phase change material
    Xu, Tao
    Chen, Qinglin
    Huang, Gongsheng
    Zhang, Zhengguo
    Gao, Xuenong
    Lu, Shushen
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 155 : 141 - 146
  • [46] Preparation of acetamtde/SiO2 thermal energy storage phase change composite material by catalyzing of alkali
    Liu, Ruixia
    Dai, Qixun
    Liu, Hui
    Chen, Caifeng
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2007, 28 (08): : 901 - 904
  • [47] Preparation of graphene oxide coated tetradecanol/expanded graphite composite phase change material for thermal energy storage
    Chi, Bichuan
    Yao, Yan
    Cui, Suping
    Jin, Xiaodong
    MATERIALS LETTERS, 2021, 282
  • [48] Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage
    Wen, Ruilong
    Zhang, Xiaoguang
    Huang, Zhaohui
    Fang, Minghao
    Liu, Yangai
    Wu, Xiaowen
    Min, Xin
    Gao, Wei
    Huang, Saifang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 178 : 273 - 279
  • [49] Preparation and Thermal Properties of Eutectic Hydrate Salt Phase Change Thermal Energy Storage Material
    Liang, Lin
    Chen, Xi
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2018, 2018
  • [50] Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage
    Parameshwaran, R.
    Deepak, K.
    Saravanan, R.
    Kalaiselvam, S.
    APPLIED ENERGY, 2014, 115 : 320 - 330