Preparation of hierarchical porous microspheres composite phase change material for thermal energy storage concrete in buildings

被引:13
|
作者
Li, Daokui [1 ]
Tang, Yili [2 ]
Zuo, Xiaochao [3 ,4 ,5 ]
Zhao, Xiaoguang [1 ]
Zhang, Xinyi [3 ,4 ,5 ]
Yang, Huaming [1 ,3 ,4 ,5 ]
机构
[1] Cent South Univ, Sch Minerals Proc & Bioengn, Hunan Key Lab Mineral Mat & Applicat, Changsha 410083, Peoples R China
[2] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[3] China Univ Geosci, Engn Res Ctr Nanogeomat, Minist Educ, Wuhan 430074, Peoples R China
[4] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Peoples R China
[5] China Univ Geosci, Key Lab Funct Geomat China Nonmetall Minerals Ind, Wuhan 430074, Peoples R China
关键词
Thermal energy storage; Hierarchical porous microspheres; Phase change material; Energy storage concrete; MIXED ALCOHOLS SYNTHESIS; CEMENT-BASED COMPOSITE; CONDUCTIVITY; PERFORMANCE;
D O I
10.1016/j.clay.2022.106771
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phase change materials with high latent heat significantly reduce building energy consumption. However, the serious leakage issue, low thermal conductivity, and the poor photothermal response utterly hinder their wide application in architecture. We reported an effective strategy for constructing hierarchical porous composite microspheres (PCN) through spray drying, calcination, and acid activation, using palygorskite (Pal) as the raw material. PCN presented a spherical hierarchical porous structure constructed by crosslinking Pal nanofibers and cellulose nanocrystals in a particular proportion. Paraffin-PCN (P-PCN) composite phase change materials (PCMs) with high shape stability, excellent photothermal conversion ability and latent heat storage capacity were synthesized. The heat preservation time of the P-PCN natural cooling from 35 degrees C to 30 degrees C is approximately twice that of the P-Pal. The P-PCN indicates obvious advantages in building thermal management, with the melting enthalpy promoted to 130.2 J/g. Further, the P-PCN-based building materials (P-PCN-B) with the P-PCN and the building aggregate maintain superior light-thermal energy conversion and thermal properties after multiple cycles. The P-PCN-B indicates outstanding mechanical properties (compression strength reaching 14.2 MPa) and flame-retarded properties. This work provides an innovative design strategy for developing multi-functional intelligent energy storage concrete and paves the way for the sustainable utilization of energy storage materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Preparation & characterization of phase change material for thermal energy storage in buildings
    Lo, Tommy Y.
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, AND CIVIL INFRASTRUCTURE 2016, 2016, 9804
  • [2] Preparation and characterization of methyl palmitate/palygorskite composite phase change material for thermal energy storage in buildings
    Zhang, Hairong
    Zhang, Liquan
    Li, Qinglin
    Huang, Chao
    Guo, Haijun
    Xiong, Lian
    Chen, Xinde
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 226 : 212 - 219
  • [3] Impregnation of porous material with phase change material for thermal energy storage
    Nomura, Takahiro
    Okinaka, Noriyuki
    Akiyama, Tomohiro
    MATERIALS CHEMISTRY AND PHYSICS, 2009, 115 (2-3) : 846 - 850
  • [4] Highly stable hierarchical porous nanosheet composite phase change materials for thermal energy storage
    Zuo, Xiaochao
    Yan, Zhaoli
    Hou, Kai
    Yang, Huaming
    Xi, Yunfei
    APPLIED THERMAL ENGINEERING, 2019, 163
  • [5] Location optimization of phase change material for thermal energy storage in concrete block for development of energy efficient buildings
    Patel, Bhaskar
    Rathore, Pushpendra Kumar Singh
    Gupta, Naveen Kumar
    Sikarwar, Basant Singh
    Sharma, R. K.
    Kumar, Rajan
    Pandey, A. K.
    RENEWABLE ENERGY, 2023, 218
  • [6] Preparation and characterization of capric-stearic acid/montmorillonite/graphene composite phase change material for thermal energy storage in buildings
    Jin, Weizhun
    Jiang, Linhua
    Chen, Lei
    Gu, Yue
    Guo, Mingzhi
    Han, Lin
    Ben, Xunqin
    Yuan, Haohuan
    Lin, Zhengxiang
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 301
  • [7] A NEW COMPOSITE PHASE CHANGE MATERIAL FOR THERMAL ENERGY STORAGE
    Su, Che-Fu
    Xiang, Xinrui
    Esmaeilzadeh, Hamed
    Wang, Jirui
    Fratto, Edward
    Charmchi, Majid
    Gu, Zhiyong
    Sun, Hongwei
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 6, 2019,
  • [8] Preparation and thermal characteristics of caprylic acid based composite as phase change material for thermal energy storage
    Sivasamy, P.
    Harikrishnan, S.
    Jayavel, R.
    Hussain, S. Imran
    Kalaiselvam, S.
    Lu, Li
    MATERIALS RESEARCH EXPRESS, 2019, 6 (10)
  • [9] Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material
    Zhang, Zhengguo
    Zhang, Ni
    Peng, Jing
    Fang, Xiaoming
    Gao, Xuenong
    Fang, Yutang
    APPLIED ENERGY, 2012, 91 (01) : 426 - 431
  • [10] Development of a Composite Laminated Phase Change Material (PCM) for Energy Storage in Buildings
    Darkwa, J.
    2009 INTERNATIONAL CONFERENCE ON SUSTAINABLE POWER GENERATION AND SUPPLY, VOLS 1-4, 2009, : 1812 - 1816