MSISR-STF: Spatiotemporal Fusion via Multilevel Single-Image Super-Resolution

被引:2
|
作者
Zheng, Xiongwei [1 ,2 ]
Feng, Ruyi [1 ,3 ]
Fan, Junqing [1 ,3 ]
Han, Wei [1 ,3 ]
Yu, Shengnan [1 ,3 ]
Chen, Jia [1 ,3 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Geol Survey, Beijing 100037, Peoples R China
[3] China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing; spatiotemporal image fusion; SISR; IGNN; TPS; MODIS SURFACE REFLECTANCE; LAND-COVER; MODEL;
D O I
10.3390/rs15245675
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to technological limitations and budget constraints, spatiotemporal image fusion uses the complementarity of high temporal-low spatial resolution (HTLS) and high spatial-low temporal resolution (HSLT) data to obtain high temporal and spatial resolution (HTHS) fusion data, which can effectively satisfy the demand for HTHS data. However, some existing spatiotemporal image fusion models ignore the large difference in spatial resolution, which yields worse results for spatial information under the same conditions. Based on the flexible spatiotemporal data fusion (FSDAF) framework, this paper proposes a multilevel single-image super-resolution (SISR) method to solve this issue under the large difference in spatial resolution. The following are the advantages of the proposed method. First, multilevel super-resolution (SR) can effectively avoid the limitation of a single SR method for a large spatial resolution difference. In addition, the issue of noise accumulation caused by multilevel SR can be alleviated by learning-based SR (the cross-scale internal graph neural network (IGNN)) and then interpolation-based SR (the thin plate spline (TPS)). Finally, we add the reference information to the super-resolution, which can effectively control the noise generation. This method has been subjected to comprehensive experimentation using two authentic datasets, affirming that our proposed method surpasses the current state-of-the-art spatiotemporal image fusion methodologies in terms of performance and effectiveness.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] A fast single-image super-resolution method implemented with CUDA
    Yuan, Yuan
    Yang, Xiaomin
    Wu, Wei
    Li, Hu
    Liu, Yiguang
    Liu, Kai
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (01) : 81 - 97
  • [42] Modeling Deformable Gradient Compositions for Single-Image Super-resolution
    Zhu, Yu
    Zhang, Yanning
    Bonev, Boyan
    Yuille, Alan L.
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 5417 - 5425
  • [43] A Conspectus of Deep Learning Techniques for Single-Image Super-Resolution
    Pandey, Garima
    Ghanekar, Umesh
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (01) : 11 - 32
  • [44] Bayesian Anchored Neighborhood Regression for Single-Image Super-Resolution
    Tang, Yinggan
    Fan, Ailian
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (08) : 5309 - 5327
  • [45] A Practical Contrastive Learning Framework for Single-Image Super-Resolution
    Wu, Gang
    Jiang, Junjun
    Liu, Xianming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 12
  • [46] MATRIX-VALUE REGRESSION FOR SINGLE-IMAGE SUPER-RESOLUTION
    Tang, Yi
    Chen, Hong
    2013 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2013, : 215 - 220
  • [47] Residual Triplet Attention Network for Single-Image Super-Resolution
    Huang, Feng
    Wang, Zhifeng
    Wu, Jing
    Shen, Ying
    Chen, Liqiong
    ELECTRONICS, 2021, 10 (17)
  • [48] Example-based learning for single-image super-resolution
    Kim, Kwang In
    Kwon, Younghee
    PATTERN RECOGNITION, 2008, 5096 : 456 - +
  • [49] Single-Image Super-Resolution by Subdictionary Coding and Kernel Regression
    Yang, Wenming
    Yuan, Tingrong
    Wang, Wei
    Zhou, Fei
    Liao, Qingmin
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (09): : 2478 - 2488
  • [50] Learning Hierarchical Decision Trees for Single-Image Super-Resolution
    Huang, Jun-Jie
    Siu, Wan-Chi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (05) : 937 - 950