3D Printed Customizable Microsampling Devices for Neuroscience Applications

被引:2
|
作者
Pysz, Patrick M. [1 ,2 ]
Hoskins, Julia K. [3 ,4 ]
Zou, Min [3 ,4 ]
Stenken, Julie A. [1 ,2 ]
机构
[1] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Mat Sci & Engn Program, Fayetteville, AR 72701 USA
[3] Univ Arkansas, Dept Mech Engn, Mat Sci & Engn Program, Fayetteville, AR 72701 USA
[4] Univ Arkansas, Ctr Adv Surface Engn, Fayetteville, AR 72701 USA
来源
ACS CHEMICAL NEUROSCIENCE | 2023年
基金
美国国家科学基金会;
关键词
3D printing; additive manufacturing; microdialysis; microsampling; microfabrication; microfluidics; 2-PHOTON POLYMERIZATION; ANALYTICAL-CHEMISTRY; MICRODIALYSIS; BRAIN; STEREOLITHOGRAPHY; TECHNOLOGY; PERFUSION; SURFACES; DESIGN;
D O I
10.1021/acschemneuro.3c00166
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multifunctional devices that incorporate chemical or physical measurements combined with ways to manipulate brain tissue via drug delivery, electrical stimulation, or light for optogenetics are desired by neuroscientists. The next generation in vivo brain devices will likely utilize the extensive flexibility and rapid processing of 3D printing. This Perspective demonstrates how close we are to this reality for advanced neuroscience measurements. 3D printing provides the opportunity to improve microsampling-based devices in ways that have not been previously available. Not only can 3D printing be used for actual device creation, but it can also allow printing of peripheral objects necessary to assemble functional devices. The most probable 3D printing set up for microsampling devices with appropriate nm to mu m feature size will likely require 2-photon polymerization-based printers. This Perspective describes the advantages and challenges for 3D printing of microsampling devices as an initial step to meet the next generation device needs of neuroscientists.
引用
收藏
页码:3278 / 3287
页数:10
相关论文
共 50 条
  • [21] 3D printed scaffolds for biomedical applications
    Varma, M. Vishnumaya
    Kandasubramanian, Balasubramanian
    Ibrahim, Sobhy M.
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 255
  • [22] 3D Printed Cryogenic High Voltage Devices
    Fink, S.
    Fuhrmann, U.
    Lange, C.
    Mueller, R.
    Zwecker, V.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (03)
  • [23] 3D printed tooling for thermoforming of medical devices
    Chimento, Jairo
    Highsmith, M. Jason
    Crane, Nathan
    RAPID PROTOTYPING JOURNAL, 2011, 17 (05) : 387 - 392
  • [24] Photogrammetric measurements of 3D printed microfluidic devices
    Guerra, M. G.
    Volpone, C.
    Galantucci, L. M.
    Percoco, G.
    ADDITIVE MANUFACTURING, 2018, 21 : 53 - 62
  • [25] 3D printed microfluidic devices with integrated valves
    Rogers, Chad I.
    Qaderi, Kamran
    Woolley, Adam T.
    Nordin, Gregory P.
    BIOMICROFLUIDICS, 2015, 9 (01):
  • [26] 3D printed microfluidic devices: enablers and barriers
    Waheed, Sidra
    Cabot, Joan M.
    Macdonald, Niall P.
    Lewis, Trevor
    Guijt, Rosanne M.
    Paull, Brett
    Breadmore, Michael C.
    LAB ON A CHIP, 2016, 16 (11) : 1993 - 2013
  • [27] 3D printed microstructures for flexible electronic devices
    Liu, Yiming
    Xu, Yeshou
    Avila, Raudel
    Liu, Chao
    Xie, Zhaoqian
    Wang, Lidai
    Yu, Xinge
    NANOTECHNOLOGY, 2019, 30 (41)
  • [28] 3D printed electrochemical energy storage devices
    Chang, Peng
    Mei, Hui
    Zhou, Shixiang
    Dassios, Konstantinos G.
    Cheng, Laifei
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (09) : 4230 - 4258
  • [29] 3D printed modules for integrated microfluidic devices
    Lee, Kyoung G.
    Park, Kyun Joo
    Seok, Seunghwan
    Shin, Sujeong
    Kim, Do Hyun
    Park, Jung Youn
    Heo, Yun Seok
    Lee, Seok Jae
    Lee, Tae Jae
    RSC ADVANCES, 2014, 4 (62): : 32876 - 32880
  • [30] 3-D printed customizable vitrification devices for preservation of genetic resources of aquatic species
    Tiersch, Connor J.
    Liu, Yue
    Tiersch, Terrence R.
    Monroe, William T.
    AQUACULTURAL ENGINEERING, 2020, 90 (90)