A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations

被引:1
|
作者
Wang, Yifei [1 ]
Huang, Jin [1 ]
Li, Hu [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Chengdu Normal Univ, Sch Math, Chengdu 611130, Peoples R China
基金
中国国家自然科学基金;
关键词
Bernoulli polynomial; Variable-order fractional integral equation; Gauss-Jacobi quadrature formula; Convergence analysis; BERNOULLI MATRIX-METHOD; DIFFERENTIAL-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; DIFFUSION; COLLOCATION; POLYNOMIALS; APPROXIMATION;
D O I
10.1007/s11075-023-01630-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a combination approach based on Bernoulli polynomials and Gauss-Jacobi quadrature formula is developed to solve the system of nonlinear variable-order fractional Volterra integral equations (V-O-FVIEs). For this, we extend the constant coefficient in the Gauss-Jacobi formula to the variable coefficient and used it in our method. The method converts the system of V-O-FVIEs into the corresponding nonlinear system of algebraic equations. In addition, we use Gronwall inequality and the collectively compact theory to prove the existence and uniqueness of the solution of the original equation and the approximate equation, respectively. The convergence analysis and the error estimation of proposed method are discussed. Finally, some numerical examples illustrate the effectiveness of the method.
引用
收藏
页码:1855 / 1877
页数:23
相关论文
共 50 条
  • [41] A higher-order numerical scheme for system of two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy
    Wang, Ziqiang
    Liu, Qin
    Cao, Junying
    AIMS MATHEMATICS, 2023, 8 (06): : 13096 - 13122
  • [42] Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations
    Doha, Eid H.
    Abdelkawy, Mohamed A.
    Amin, Ahmed Z. M.
    Baleanu, Dumitru
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (02): : 176 - 188
  • [43] Numerical Solution of Variable-Order Fractional Differential Equations Using Bernoulli Polynomials
    Nemati, Somayeh
    Lima, Pedro M.
    Torres, Delfim F. M.
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [44] A FAST AND PRECISE NUMERICAL ALGORITHM FOR A CLASS OF VARIABLE-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS
    Bhrawyi, Ali H.
    Zaky, Mahmoud A.
    Abdel-Aty, Mahmoud
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2017, 18 (01): : 17 - 24
  • [45] An efficient numerical approach to solve a class of variable-order fractional integro-partial differential equations
    Babaei, Afshin
    Banihashemi, Seddigheh
    Cattani, Carlo
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) : 674 - 689
  • [46] Numerical Analysis of the Fractional-Order Nonlinear System of Volterra Integro-Differential Equations
    Sunthrayuth, Pongsakorn
    Ullah, Roman
    Khan, Adnan
    Shah, Rasool
    Kafle, Jeevan
    Mahariq, Ibrahim
    Jarad, Fahd
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [47] A numerical method for solving variable-order fractional diffusion equations using fractional-order Taylor wavelets
    Vo Thieu, N.
    Razzaghi, Mohsen
    Toan Phan Thanh
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2668 - 2686
  • [48] A Computational Approach to Exponential-Type Variable-Order Fractional Differential Equations
    Roberto Garrappa
    Andrea Giusti
    Journal of Scientific Computing, 2023, 96
  • [49] A high order approach for nonlinear Volterra-Hammerstein integral equations
    Zhang, Jian
    Hou, Jinjiao
    Niu, Jing
    Xie, Ruifeng
    Dai, Xuefei
    AIMS MATHEMATICS, 2022, 7 (01): : 1460 - 1469
  • [50] The unique identification of variable-order fractional wave equations
    Zheng, Xiangcheng
    Wang, Hong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):