Morphosyntactic probing of multilingual BERT models

被引:2
|
作者
Acs, Judit [1 ,2 ]
Hamerlik, Endre [1 ,4 ]
Schwartz, Roy [5 ]
Smith, Noah A. [6 ,7 ]
Kornai, Andras [1 ,3 ]
机构
[1] ELKH Inst Comp Sci & Control SZTAK, Informat Lab, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Fac Elect Engn & Informat, Dept Automat & Appl Informat, Budapest, Hungary
[3] Budapest Univ Technol & Econ, Fac Nat Sci, Dept Algebra, Budapest, Hungary
[4] Comenius Univ, Fac Math Phys & Informat, Dept Appl Informat, Bratislava, Slovakia
[5] Hebrew Univ Jerusalem, Sch Comp Sci & Engn, Jerusalem, Israel
[6] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA USA
[7] Allen Inst Artificial Intelligence, Seattle, WA USA
关键词
Morphology; Language Resources; Multilinguality; Machine Learning; Language Models;
D O I
10.1017/S1351324923000190
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce an extensive dataset for multilingual probing of morphological information in language models (247 tasks across 42 languages from 10 families), each consisting of a sentence with a target word and a morphological tag as the desired label, derived from the Universal Dependencies treebanks. We find that pre-trained Transformer models (mBERT and XLM-RoBERTa) learn features that attain strong performance across these tasks. We then apply two methods to locate, for each probing task, where the disambiguating information resides in the input. The first is a new perturbation method that "masks" various parts of context; the second is the classical method of Shapley values. The most intriguing finding that emerges is a strong tendency for the preceding context to hold more information relevant to the prediction than the following context.
引用
收藏
页码:753 / 792
页数:40
相关论文
共 50 条
  • [21] Same Neurons, Different Languages: Probing Morphosyntax in Multilingual Pre-trained Models
    Stanczak, Karolina
    Ponti, Edoardo
    Hennigen, Lucas Torroba
    Cotterell, Ryan
    Augenstein, Isabelle
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 1589 - 1598
  • [22] Probing Structured Pruning on Multilingual Pre-trained Models: Settings, Algorithms, and Efficiency
    Li, Yanyang
    Luo, Fuli
    Xu, Runxin
    Huang, Songfang
    Huang, Fei
    Wang, Liwei
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 1852 - 1865
  • [23] Probing language identity encoded in pre-trained multilingual models: a typological view
    Zheng, Jianyu
    Liu, Ying
    PEERJ COMPUTER SCIENCE, 2022, 7
  • [24] Probing language identity encoded in pre-trained multilingual models: a typological view
    Zheng J.
    Liu Y.
    PeerJ Computer Science, 2022, 8
  • [25] MULTEXT-East Version 4: Multilingual Morphosyntactic Specifications, Lexicons and Corpora
    Erjavec, Tomaz
    LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2010, : 2544 - 2547
  • [26] Unsupervised offensive speech detection for multimedia based on multilingual BERT
    Liu, Ge
    Yang, Xiaona
    Shi, Xiayang
    Li, Yinlin
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2024, 46 (03) : 186 - 196
  • [27] A BERT-Based Approach for Multilingual Discourse Connective Detection
    Muermans, Thomas Chapados
    Kosseim, Leila
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS (NLDB 2022), 2022, 13286 : 449 - 460
  • [28] Monolingual and multilingual topic analysis using LDA and BERT embeddings
    Xie, Qing
    Zhang, Xinyuan
    Ding, Ying
    Song, Min
    JOURNAL OF INFORMETRICS, 2020, 14 (03)
  • [29] Natural Language Inference for Portuguese Using BERT and Multilingual Information
    Sobrevilla Cabezudo, Marco Antonio
    Inacio, Marcio
    Rodrigues, Ana Carolina
    Casanova, Edresson
    de Sousa, Rogerio Figueredo
    COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANGUAGE, PROPOR 2020, 2020, 12037 : 346 - 356
  • [30] Emotion recognition in Hindi text using multilingual BERT transformer
    Tapesh Kumar
    Mehul Mahrishi
    Girish Sharma
    Multimedia Tools and Applications, 2023, 82 : 42373 - 42394