Convergence of numerical solution for the inhomogeneous Landau-Lifshitz equations with Gilbert damping

被引:0
|
作者
Liu, Le [1 ]
Song, Wenjing [2 ,4 ]
Yang, Ganshan [3 ,5 ]
机构
[1] Yichun Vocat Tech Coll, Yichun, Peoples R China
[2] Xian Polytech Univ, Sch Sci, Xian, Peoples R China
[3] Yunnan Minzu Univ, Dept Math, Kunming, Peoples R China
[4] Xian Polytech Univ, Sch Sci, Xian 710048, Peoples R China
[5] Yunnan Minzu Univ, Dept Math, Kunming 650031, Peoples R China
关键词
Gilbert damping; inhomogeneous Landau-Lifshitz equation; numerical method; EXISTENCE;
D O I
10.1002/mma.9385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the inhomogeneous Landau-Lifshitz equation with nonuniform Gilbert damping term by numerical method. First, we establish a semi-discrete form for the inhomogeneous Landau-Lifshitz equation with nonuniform Gilbert damping, which is continuous in time. Then we study the temporal discretization. It proposes a simple projection method to solve our issue. Finally, we prove that it is unconditionally stable.
引用
收藏
页码:15391 / 15411
页数:21
相关论文
共 50 条
  • [21] Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations
    Bell, John B.
    Garcia, Alejandro L.
    Williams, Sarah A.
    PHYSICAL REVIEW E, 2007, 76 (01)
  • [22] Multisoliton solutions of the discretized Landau-Lifshitz equations
    Tomoyuki, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (06) : 1441 - 1443
  • [23] NEW CONSERVATION LAW FOR THE LANDAU-LIFSHITZ EQUATIONS
    YELEONSKY, VM
    KIROVA, NN
    KULAGIN, NE
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1979, 77 (01): : 409 - 413
  • [24] The stability of localized solutions of Landau-Lifshitz equations
    Gustafson, S
    Shatah, J
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (09) : 1136 - 1159
  • [25] Adiabatic domain wall motion and Landau-Lifshitz damping
    Stiles, M. D.
    Saslow, W. M.
    Donahue, M. J.
    Zangwill, A.
    PHYSICAL REVIEW B, 2007, 75 (21)
  • [26] TWO TRANSFORMS ON LANDAU-LIFSHITZ EQUATIONS AND THEIR APPLICATION
    Yang Ganshan
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2007, 20 (04): : 299 - 312
  • [27] GENERAL TYPE OF SOLUTIONS OF LANDAU-LIFSHITZ EQUATIONS
    ELEONSKII, VM
    KIROVA, NN
    PETROV, VM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1975, 68 (05): : 1928 - 1936
  • [28] A numerical method for the Landau-Lifshitz equation with magnetostriction
    Banas, E
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (16) : 1939 - 1954
  • [29] BUBBLES OF LANDAU-LIFSHITZ EQUATIONS WITH APPLIED FIELDS
    Ding Shijin
    Guo Boling
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 18 (01): : 1 - 12
  • [30] Numerical technique for integration of the Landau-Lifshitz equation
    Serpico, C
    Mayergoyz, ID
    Bertotti, G
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) : 6991 - 6993