Deformations and rigidity in varieties of Lie algebras

被引:0
|
作者
Barrionuevo, Josefina [1 ]
Tirao, Paulo [1 ,2 ]
Sulca, Diego [1 ]
机构
[1] Univ Nacl Cordoba, CONICET, CIEM FaMAF, RA-5000 Cordoba, Argentina
[2] Guangdong Technion Israel Inst Technol, 241 Daxue Rd, Shantou, Guandong Prov, Peoples R China
关键词
Lie algebras varieties; Deformations; Rigidity; COHOMOLOGY;
D O I
10.1016/j.jpaa.2022.107217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel construction of linear deformations for Lie algebras and use it to prove the non-rigidity of several classes of Lie algebras in different varieties. In particular, we address the problem of k-rigidity for k-step nilpotent Lie algebras and k-solvable Lie algebras.We show that Lie algebras with an abelian factor are not rigid, even for the case of a 1-dimensional abelian factor. This holds in the more restricted case of k-rigidity. We also prove that the k-step free nilpotent Lie algebras are not (k + 1)-rigid, but however they are k-rigid.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] MODELS OF LIE-ALGEBRAS AND DEFORMATIONS
    GOZE, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (17): : 813 - 815
  • [32] Rigidity of Some Classes of Lie Algebras in Connection to Leibniz Algebras
    Abdulkareem, Abdulafeez O.
    Rakhimov, Isamiddin S.
    Husain, Sharifah K. Said
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 702 - 707
  • [33] A survey on stability and rigidity results for Lie algebras
    Crainic, Marius
    Schatz, Florian
    Struchiner, Ivan
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (05): : 957 - 976
  • [34] Rigidity of Formal Characters of Lie algebras of type A
    Zhou, Zhongguo
    JOURNAL OF LIE THEORY, 2015, 25 (02) : 553 - 558
  • [35] A rigidity theorem for pre-Lie algebras
    Livernet, Muriel
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 207 (01) : 1 - 18
  • [36] Comparison of products of the varieties of Lie algebras
    Ol'Shanskii, AY
    Shmelkin, AL
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (09) : 4267 - 4275
  • [37] Decomposition varieties in semisimple Lie algebras
    Broer, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (05): : 929 - 971
  • [38] On Varieties of Lie Algebras of Maximal Class
    Barron, Tatyana
    Kerner, Dmitry
    Tyalavadze, Marina
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (01): : 55 - 89
  • [39] SOME VARIETIES OF LIE-ALGEBRAS
    SHEINA, GV
    SIBERIAN MATHEMATICAL JOURNAL, 1976, 17 (01) : 153 - 157
  • [40] ON PORCUPINE VARIETIES IN LIE-ALGEBRAS
    HOFMANN, KH
    RUPPERT, WAF
    MATHEMATISCHE ANNALEN, 1994, 298 (03) : 403 - 425