Restricted Injective Dimensions over Cohen-Macaulay Rings

被引:1
|
作者
Hrbek, Michal [1 ]
Le Gros, Giovanna [2 ,3 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 115 67, Czech Republic
[2] Univ Autonoma Barcelona, Dept Math, Bellaterra 08193, Barcelona, Spain
[3] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
关键词
Hom injective dimension; Cohen-Macaulay injective dimension; Cohen-Macaulay rings; Restricted injective dimension; Finite type; Tilting classes; Finitistic dimensions; TILTING MODULES; COTORSION PAIRS; ENVELOPES; COMPLEXES; COVERS; DEPTH;
D O I
10.1007/s10468-024-10262-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the small and large restricted injective dimensions coincide for Cohen-Macaulay rings of finite Krull dimension. Based on this, and inspired by the recent work of Sather-Wagstaff and Totushek, we suggest a new definition of Cohen-Macaulay Hom injective dimension. We show that the class of Cohen-Macaulay Hom injective modules is the right constituent of a perfect cotorsion pair. Our approach relies on tilting theory, and in particular, on the explicit construction of the tilting module inducing the minimal tilting class recently obtained in (Hrbek et al. 2022).
引用
收藏
页码:1373 / 1393
页数:21
相关论文
共 50 条