Study on air-side performance of air-cooled heat exchangers under large air velocity and wet conditions

被引:1
|
作者
Wei, Wenjian [1 ,2 ]
Xu, Guoliang [1 ]
Wang, Yanfeng [2 ]
Ding, Ergang [2 ]
机构
[1] Zhejiang Univ Water Resources & Elect Power, Inst Adv Heat Transfer & Energy Applicat, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang DunAn Themal Tech Co Ltd, Zhuji 311835, Zhejiang, Peoples R China
关键词
Heat transfer; Carryover; High humidity; Fin -and -tube heat exchanger; Microchannel heat exchanger; CONDENSATE DRAINAGE BEHAVIOR; MASS-TRANSFER; FIN; SURFACE;
D O I
10.1016/j.tsep.2024.102389
中图分类号
O414.1 [热力学];
学科分类号
摘要
Humidity condensation and carryover from air-cooled heat exchanger affects human comfort and equipment security in the working environment. Surface treatment with a hydrophilic coating is an effective water drainage and carryover resistance solution. In present study, the condensation carryover and air-side performances of a fin-and-tube heat exchanger (FTHX) and microchannel heat exchanger (MCHX) with different fin pitches and surface treatments were experimentally investigated under large air velocities and different inlet humidity conditions. Hydrophilic treatment of FTHX improved heat transfer and condensation drainage, and reduced air pressure loss. In contrast, with MCHX, hydrophilic treatment did not improve heat transfer and rather increased the air pressure loss. For FTHX, the results showed that, compared with the bare fin, the hydrophilic surface treated fin enhanced the Colburn j factor by 20-60 and 10-40% at inlet air dry/wet bulb temperature of 26.7/ 19.4(degrees)C (normal humidity condition) and 26.7/23.9(degrees)C (high humidity condition), respectively. The air friction factor f was reduced by namely by 10-40 and 20-40% under normal- and high-humidity conditions, respectively. Condensing water flowed or retained over the fin surface in film, which suppressed the formation of a water bridge among fins, improved water carry-over, and increased the critical air velocity by 50%. However, water film formation over the MCHX enlarged the water stagnant around the fin corner, which increased the air resistance by 5-10%, and increased the probability of the continuous water bridge formation and carryover.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] EFFECTIVE CONTROL OF AIR-COOLED HEAT EXCHANGERS.
    Croke, R.
    Russell, C.
    1983, (64):
  • [32] Evaluation of flow maldistribution in air-cooled heat exchangers
    Habib, M. A.
    Ben-Mansour, R.
    Said, S. A. M.
    Al-Qahtani, M. S.
    Al-Bagawi, J. J.
    Al-Mansour, K. M.
    COMPUTERS & FLUIDS, 2009, 38 (03) : 677 - 690
  • [33] Improving the energy efficiency of air-cooled heat exchangers
    Kuntysh, VB
    Bessonnyi, AN
    Brill, AA
    CHEMICAL AND PETROLEUM ENGINEERING, 1997, 33 (04) : 402 - 407
  • [34] AIR-COOLED HEAT-EXCHANGERS - CONVENTIONAL AND UNCONVENTIONAL
    KALS, W
    HYDROCARBON PROCESSING, 1994, 73 (08): : 138 - 140
  • [35] Improving the energy efficiency of air-cooled heat exchangers
    V. B. Kuntysh
    A. N. Bessonnyi
    A. A. Brill'
    Chemical and Petroleum Engineering, 1997, 33 : 402 - 407
  • [36] General Aspects of Air-Cooled Heat Exchangers.
    Galvan, J.A.
    Revilla B., L.
    Chewtat, Ma.E.
    1978, 10 (01): : 59 - 73
  • [37] On the Efficiency of Air-Cooled Metal Foam Heat Exchangers
    Fiedler, Thomas
    Movahedi, Nima
    Stanger, Rohan
    METALS, 2024, 14 (07)
  • [38] SELECTING AND SPECIFYING AIR-COOLED HEAT-EXCHANGERS
    BAKER, WJ
    HYDROCARBON PROCESSING, 1980, 60 (05): : 173 - 177
  • [39] CHOICE OF MATERIALS FOR AIR-COOLED HEAT-EXCHANGERS
    PAIKERT, P
    CHEMIE INGENIEUR TECHNIK, 1989, 61 (08) : 590 - 596
  • [40] Thermodynamic analysis and optimization of air-cooled heat exchangers
    Mohammad Reza Salimpour
    Zabihollah Bahrami
    Heat and Mass Transfer, 2011, 47 : 35 - 44