An Unsupervised Image Denoising Method Using a Nonconvex Low-Rank Model with TV Regularization

被引:1
|
作者
Chen, Tianfei [1 ,2 ,3 ]
Xiang, Qinghua [1 ,2 ,3 ]
Zhao, Dongliang [1 ,2 ,3 ]
Sun, Lijun [1 ,2 ,3 ]
机构
[1] Henan Univ Technol, Key Lab Grain Informat Proc & Control, Minist Educ, Zhengzhou 450001, Peoples R China
[2] Henan Univ Technol, Zhengzhou Key Lab Machine Percept & Intelligent Sy, Zhengzhou 450001, Peoples R China
[3] Henan Univ Technol, Sch Informat Sci & Engn, Zhengzhou 450001, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 12期
基金
中国国家自然科学基金;
关键词
image denoising; nonconvex low-rank approximation; total variational regularization; robust principal component analysis; PRINCIPAL COMPONENT ANALYSIS; NOISE REMOVAL; MINIMIZATION; NORM;
D O I
10.3390/app13127184
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In real-world scenarios, images may be affected by additional noise during compression and transmission, which interferes with postprocessing such as image segmentation and feature extraction. Image noise can also be induced by environmental variables and imperfections in the imaging equipment. Robust principal component analysis (RPCA), one of the traditional approaches for denoising images, suffers from a failure to efficiently use the background's low-rank prior information, which lowers its effectiveness under complex noise backgrounds. In this paper, we propose a robust PCA method based on a nonconvex low-rank approximation and total variational regularization (TV) to model the image denoising problem in order to improve the denoising performance. Firstly, we use a nonconvex ?-norm to address the issue that the traditional nuclear norm penalizes large singular values excessively. The rank approximation is more accurate than the nuclear norm thanks to the elimination of matrix elements with substantial approximation errors to reduce the sparsity error. The method's robustness is improved by utilizing the low sensitivity of the ?-norm to outliers. Secondly, we use the l(1)-norm to increase the sparsity of the foreground noise. The TV norm is used to improve the smoothness of the graph structure in accordance with the sparsity of the image in the gradient domain. The denoising effectiveness of the model is increased by employing the alternating direction multiplier strategy to locate the global optimal solution. It is important to note that our method does not require any labeled images, and its unsupervised denoising principle enables the generalization of the method to different scenarios for application. Our method can perform denoising experiments on images with different types of noise. Extensive experiments show that our method can fully preserve the edge structure information of the image, preserve important features of the image, and maintain excellent visual effects in terms of brightness smoothing.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization
    Xu, Fei
    Chen, Yongyong
    Peng, Chong
    Wang, Yongli
    Liu, Xuefeng
    He, Guoping
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1141 - 1145
  • [22] Hyperspectral Image Denoising With Total Variation Regularization and Nonlocal Low-Rank Tensor Decomposition
    Zhang, Hongyan
    Liu, Lu
    He, Wei
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3071 - 3084
  • [23] Image Denoising Using Low-Rank Dictionary and Sparse Representation
    Li, Tao
    Wang, Weiwei
    Feng, Xiangchu
    Xu, Long
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 228 - 232
  • [24] Hyperspectral Image Recovery Using Nonconvex Sparsity and Low-Rank Regularizations
    Hu, Yue
    Li, Xiaodi
    Gu, Yanfeng
    Jacob, Mathews
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (01): : 532 - 545
  • [25] A Nonconvex Method to Low-Rank Matrix Completion
    He, Haizhen
    Cui, Angang
    Yang, Hong
    Wen, Meng
    [J]. IEEE ACCESS, 2022, 10 : 55226 - 55234
  • [26] Low-rank with sparsity constraints for image denoising
    Ou, Yang
    Li, Bailin
    Swamy, M. N. S.
    [J]. INFORMATION SCIENCES, 2023, 637
  • [27] HYPERSPECTRAL IMAGE DENOISING USING LOW-RANK AND SPARSE MODEL BASED DEEP UNROLLING
    Zhao, Bin
    Ulfarsson, Magnus O.
    Sigurdsson, Jakob
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5818 - 5821
  • [28] Multi-scale low-rank approximation method for image denoising
    Ou, Yang
    Zhang, Bo
    Li, Bailin
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (14) : 20357 - 20371
  • [29] Multi-scale low-rank approximation method for image denoising
    Yang Ou
    Bo Zhang
    Bailin Li
    [J]. Multimedia Tools and Applications, 2022, 81 : 20357 - 20371
  • [30] A Low-Rank Tensor Dictionary Learning Method for Hyperspectral Image Denoising
    Gong, Xiao
    Chen, Wei
    Chen, Jie
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 1168 - 1180