An Unsupervised Image Denoising Method Using a Nonconvex Low-Rank Model with TV Regularization

被引:1
|
作者
Chen, Tianfei [1 ,2 ,3 ]
Xiang, Qinghua [1 ,2 ,3 ]
Zhao, Dongliang [1 ,2 ,3 ]
Sun, Lijun [1 ,2 ,3 ]
机构
[1] Henan Univ Technol, Key Lab Grain Informat Proc & Control, Minist Educ, Zhengzhou 450001, Peoples R China
[2] Henan Univ Technol, Zhengzhou Key Lab Machine Percept & Intelligent Sy, Zhengzhou 450001, Peoples R China
[3] Henan Univ Technol, Sch Informat Sci & Engn, Zhengzhou 450001, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 12期
基金
中国国家自然科学基金;
关键词
image denoising; nonconvex low-rank approximation; total variational regularization; robust principal component analysis; PRINCIPAL COMPONENT ANALYSIS; NOISE REMOVAL; MINIMIZATION; NORM;
D O I
10.3390/app13127184
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In real-world scenarios, images may be affected by additional noise during compression and transmission, which interferes with postprocessing such as image segmentation and feature extraction. Image noise can also be induced by environmental variables and imperfections in the imaging equipment. Robust principal component analysis (RPCA), one of the traditional approaches for denoising images, suffers from a failure to efficiently use the background's low-rank prior information, which lowers its effectiveness under complex noise backgrounds. In this paper, we propose a robust PCA method based on a nonconvex low-rank approximation and total variational regularization (TV) to model the image denoising problem in order to improve the denoising performance. Firstly, we use a nonconvex ?-norm to address the issue that the traditional nuclear norm penalizes large singular values excessively. The rank approximation is more accurate than the nuclear norm thanks to the elimination of matrix elements with substantial approximation errors to reduce the sparsity error. The method's robustness is improved by utilizing the low sensitivity of the ?-norm to outliers. Secondly, we use the l(1)-norm to increase the sparsity of the foreground noise. The TV norm is used to improve the smoothness of the graph structure in accordance with the sparsity of the image in the gradient domain. The denoising effectiveness of the model is increased by employing the alternating direction multiplier strategy to locate the global optimal solution. It is important to note that our method does not require any labeled images, and its unsupervised denoising principle enables the generalization of the method to different scenarios for application. Our method can perform denoising experiments on images with different types of noise. Extensive experiments show that our method can fully preserve the edge structure information of the image, preserve important features of the image, and maintain excellent visual effects in terms of brightness smoothing.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Hyperspectral Image Denoising Based on Nonlocal Low-Rank and TV Regularization
    Kong, Xiangyang
    Zhao, Yongqiang
    Xue, Jize
    Chan, Jonathan Cheung-Wai
    Ren, Zhigang
    Huang, HaiXia
    Zang, Jiyuan
    [J]. REMOTE SENSING, 2020, 12 (12)
  • [2] Hyperspectral Image Denoising Based on Nonconvex Low-Rank Tensor Approximation and lp Norm Regularization
    Li Bo
    Luo Xuegang
    Lv Junrui
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [3] Adaptive Total-Variation and Nonconvex Low-Rank Model for Image Denoising
    Li, Fang
    Wang, Xianghai
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
  • [4] Sparse and Low-Rank Coupling Image Segmentation Model Via Nonconvex Regularization
    Zhang, Xiujun
    Xu, Chen
    Li, Min
    Sun, Xiaoli
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (02)
  • [5] Hyperspectral Image Denoising Using Nonconvex Local Low-Rank and Sparse Separation With Spatial Spectral Total Variation Regularization
    Peng, Chong
    Liu, Yang
    Kang, Kehan
    Chen, Yongyong
    Wu, Xinxing
    Cheng, Andrew
    Kang, Zhao
    Chen, Chenglizhao
    Cheng, Qiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] A new nonlocal low-rank regularization method with applications to magnetic resonance image denoising
    Lu, Jian
    Xu, Chen
    Hu, Zhenwei
    Liu, Xiaoxia
    Jiang, Qingtang
    Meng, Deyu
    Lin, Zhouchen
    [J]. INVERSE PROBLEMS, 2022, 38 (06)
  • [7] Nonconvex low-rank regularization method for video snapshot compressive imaging
    Li, Min
    Hu, Huanran
    Yang, Ming
    Han, Yu
    [J]. APPLIED MATHEMATICAL MODELLING, 2025, 137
  • [8] Joint Spatial and Spectral Low-Rank Regularization for Hyperspectral Image Denoising
    Xue, Jize
    Zhao, Yongqiang
    Liao, Wenzhi
    Kong, Seong G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (04): : 1940 - 1958
  • [9] Hyperspectral Image Denoising With Weighted Nonlocal Low-Rank Model and Adaptive Total Variation Regularization
    Chen, Yang
    Cao, Wenfei
    Pang, Li
    Cao, Xiangyong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Low-Rank tensor completion based on nonconvex regularization
    Su, Xinhua
    Ge, Huanmin
    Liu, Zeting
    Shen, Yanfei
    [J]. SIGNAL PROCESSING, 2023, 212