Optimal patrolling strategies for trees and complete networks

被引:1
|
作者
Bui, Thuy [1 ]
Lidbetter, Thomas [1 ,2 ]
机构
[1] Rutgers Business Sch, 1 Washington Pk, Newark, NJ 07102 USA
[2] Univ Virginia, Dept Syst & Informat Engn, Charlottesville, VA 22903 USA
基金
美国国家科学基金会;
关键词
Game theory; Patrolling; Zero-sum games; Networks; SEARCH GAMES;
D O I
10.1016/j.ejor.2023.05.033
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We present solutions to a continuous patrolling game played on network. In this zero-sum game, an At-tacker chooses a time and place to attack a network for a fixed amount of time. A Patroller patrols the network with the aim of intercepting the attack with maximum probability. Our main result is the proof of a recent conjecture on the optimal patrolling strategy for trees. The conjecture asserts that a partic-ular patrolling strategy called the E-patrolling strategy is optimal for all tree networks. The conjecture was previously known to be true in a limited class of special cases. The E-patrolling strategy has the advantage of being straightforward to calculate and implement. We prove the conjecture by presenting & epsilon;-optimal strategies for the Attacker which provide upper bounds for the value of the game that come arbitrarily close to the lower bound provided by the E-patrolling strategy. We also solve the patrolling game in some cases for complete networks.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:769 / 776
页数:8
相关论文
共 50 条
  • [21] Strategies for Patrolling Missions with Multiple UAVs
    Kristofer S. Kappel
    Tauã M. Cabreira
    João L. Marins
    Lisane B. de Brisolara
    Paulo R. Ferreira
    Journal of Intelligent & Robotic Systems, 2020, 99 : 499 - 515
  • [22] Finding Optimal Spanning Trees For Damaged Networks
    Hamilton, John
    Shahmohamad, Hossein
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2024, 121 : 67 - 70
  • [23] Disjoint Steiner Trees in the Balanced Complete Multipartite Networks
    Li, Yinkui
    Song, Yilin
    Wei, Liqun
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [24] EMBEDDING COMPLETE BINARY-TREES INTO BUTTERFLY NETWORKS
    GUPTA, AK
    HAMBRUSCH, SE
    IEEE TRANSACTIONS ON COMPUTERS, 1991, 40 (07) : 853 - 863
  • [25] Strategies for Patrolling Missions with Multiple UAVs
    Kappel, Kristofer S.
    Cabreira, Taua M.
    Marins, Joao L.
    de Brisolara, Lisane B.
    Ferreira Jr, Paulo R.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2020, 99 (3-4) : 499 - 515
  • [26] Optimal depth-first strategies for and-or trees
    Greiner, R
    Hayward, R
    Molloy, M
    EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, : 725 - 730
  • [27] Optimal radio labellings of complete m-ary trees
    Li, Xiangwen
    Mak, Vicky
    Zhou, Sanming
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (05) : 507 - 515
  • [28] OPTIMAL EMBEDDING OF COMPLETE BINARY-TREES INTO LINES AND GRIDS
    HECKMANN, R
    KLASING, R
    MONIEN, B
    UNGER, W
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 570 : 25 - 35
  • [29] On Optimal Antijamming Strategies in Sensor Networks
    Zhu, Yanmin
    Jiang, Yuan
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2012,
  • [30] Optimal Influence Strategies in Social Networks
    Christos Bilanakos
    Dionisios N. Sotiropoulos
    Ifigeneia Georgoula
    George M. Giaglis
    Computational Economics, 2017, 49 : 517 - 561