Negative Moments of L-Functions With Small Shifts Over Function Fields

被引:1
|
作者
Florea, Alexandra [1 ]
机构
[1] UC Irvine, Math Dept, Rowland Hall, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
DIRICHLET L-FUNCTIONS; RANDOM-MATRIX THEORY; LOWER BOUNDS; ZETA; VALUES; CHI(D)); L(1/2;
D O I
10.1093/imrn/rnad118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider negative moments of quadratic Dirichlet L-functions over function fields. Summing over monic square-free polynomials of degree 2g + 1 in F-q[x], we obtain an asymptotic formula for the k(th) shifted negative moment of L (1/2+ beta, chi(D)), in certain ranges of beta(e.g., when roughly beta >> log g/g and k < 1). We also obtain non-trivial upper bounds for the k(th) shifted negative moment when log(1/beta) << log g. Previously, almost sharp upper bounds were obtained in [3] in the range beta >> g(- 1/2k+is an element of).
引用
收藏
页码:2298 / 2337
页数:40
相关论文
共 50 条