FINITE-TIME STABILITY OF NON-INSTANTANEOUS IMPULSIVE SET DIFFERENTIAL EQUATIONS?

被引:1
|
作者
Wang, Peiguang [1 ]
Guo, Mengyu [1 ]
Bao, Junyan [1 ]
机构
[1] Hebei Univ, Sch Math & Informat Sci, Baoding 071002, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Set differential equations; non-instantaneous impulses; finite-time stability; SYSTEMS;
D O I
10.11948/20220244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the finite-time stability of non -instant-aneous impulsive set differential equations. By using the generalized Gronwall inequality and a revised Lyapunov method, the finite-time stability criteria for such equations are obtained. Finally, an example is given to illustrate the validity of the results.
引用
收藏
页码:954 / 968
页数:15
相关论文
共 50 条
  • [21] Variational approach to non-instantaneous impulsive nonlinear differential equations
    Bai, Liang
    Nieto, Juan J.
    Wang, Xiaoyun
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (05): : 2440 - 2448
  • [22] Periodic problem for non-instantaneous impulsive partial differential equations
    Zhang, Huanhuan
    Mu, Jia
    AIMS MATHEMATICS, 2021, 7 (03): : 3345 - 3359
  • [23] Non-Instantaneous Impulsive Fractional Differential Equations with State Dependent Delay and Practical Stability
    Agarwal, Ravi
    Almeida, Ricardo
    Hristova, Snezhana
    O'Regan, Donal
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (05) : 1699 - 1718
  • [24] Non-Instantaneous Impulsive Fractional Differential Equations with State Dependent Delay and Practical Stability
    Ravi Agarwal
    Ricardo Almeida
    Snezhana Hristova
    Donal O’Regan
    Acta Mathematica Scientia, 2021, 41 : 1699 - 1718
  • [25] Lipschitz stability of differential equations with non-instantaneous impulses
    Snezhana Hristova
    Radoslava Terzieva
    Advances in Difference Equations, 2016
  • [26] Lipschitz stability of differential equations with non-instantaneous impulses
    Hristova, Snezhana
    Terzieva, Radoslava
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [27] Lipschitz Stability for Non-Instantaneous Impulsive Caputo Fractional Differential Equations with State Dependent Delays
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    AXIOMS, 2019, 8 (01)
  • [28] Stability and solvability for a class of optimal control problems described by non-instantaneous impulsive differential equations
    Yi Chen
    Kaixuan Meng
    Advances in Difference Equations, 2020
  • [29] Stability and solvability for a class of optimal control problems described by non-instantaneous impulsive differential equations
    Chen, Yi
    Meng, Kaixuan
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [30] Almost periodic solutions for a class of non-instantaneous impulsive differential equations
    Tian, Ying
    Wang, JinRong
    Zhou, Yong
    QUAESTIONES MATHEMATICAE, 2019, 42 (07) : 885 - 905