TORSORS AND STABLE EQUIVARIANT BIRATIONAL GEOMETRY

被引:6
|
作者
Hassett, Brendan [1 ]
Tschinkel, Yuri [2 ,3 ]
机构
[1] Brown Univ, Dept Math, Box 1917 151,Thayer St, Providence, RI 02912 USA
[2] NYU, Courant Inst, New York, NY 10012 USA
[3] Simons Fdn, 160 Fifth Ave, New York, NY 10010 USA
基金
美国国家科学基金会;
关键词
14L30; 14E07; CREMONA GROUP; POINTS;
D O I
10.1017/nmj.2022.29
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop the formalism of universal torsors in equivariant birational geometry and apply it to produce new examples of nonbirational but stably birational actions of finite groups.
引用
收藏
页码:275 / 297
页数:23
相关论文
共 50 条
  • [31] Perverse schobers and birational geometry
    Bondal, Alexey
    Kapranov, Mikhail
    Schechtman, Vadim
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (01): : 85 - 143
  • [32] ON THE BIRATIONAL GEOMETRY OF SCHUBERT VARIETIES
    Schmidt, Benjamin
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2015, 143 (03): : 489 - 502
  • [33] Secant varieties and birational geometry
    Peter Vermeire
    Mathematische Zeitschrift, 2002, 242 : 75 - 95
  • [34] BIRATIONAL GEOMETRY OLD AND NEW
    Grassi, Antonella
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (01) : 99 - 123
  • [35] Equivariant enumerative geometry
    Brazelton, Thomas
    ADVANCES IN MATHEMATICS, 2025, 461
  • [36] Towards Parallel Methods in Birational Geometry
    Mirgain, Benjamin
    MATHEMATICAL SOFTWARE-ICMS 2024, 2024, 14749 : 135 - 144
  • [37] Birational geometry of singular Fano varieties
    Pukhlikov, A. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 264 (01) : 159 - 177
  • [38] Birational Geometry of the Space of Complete Quadrics
    Huerta, Cesar Lozano
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (23) : 12563 - 12589
  • [39] Birational geometry of symplectic quotient singularities
    Gwyn Bellamy
    Alastair Craw
    Inventiones mathematicae, 2020, 222 : 399 - 468
  • [40] Birational geometry of defective varieties, II
    Ballico, Edoardo
    Fontanari, Claudio
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (04) : 1578 - 1582