Machine Learning for Machine Tools

被引:0
|
作者
Sinkora, Ed
机构
来源
MANUFACTURING ENGINEERING | 2023年 / 171卷 / 02期
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Adding intelligence to manufacturing operations
引用
收藏
页码:68 / 75
页数:8
相关论文
共 50 条
  • [11] Critical Tools for Machine Learning: Situating, Figuring, Diffracting, Fabulating Machine Learning Systems Design
    Klumbyte, Goda
    Draude, Claude
    Taylor, Alex
    [J]. PROCEEDINGS OF THE 14TH BIANNUAL CONFERENCE OF THE ITALIAN SIGCHI CHAPTER (CHIITALY 2021), 2021,
  • [12] Software Identification by Standard Machine Learning Tools
    Sukhoparov, M. E.
    Salakhutdinova, K., I
    Lebedev, I. S.
    [J]. AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2021, 55 (08) : 1175 - 1179
  • [13] Flashlight: Enabling Innovation in Tools for Machine Learning
    Kahn, Jacob
    Pratap, Vineel
    Likhomanenko, Tatiana
    Xu, Qiantong
    Hannun, Awni
    Cai, Jeff
    Tomasello, Paden
    Lee, Ann
    Grave, Edouard
    Avidov, Gilad
    Steiner, Benoit
    Liptchinsky, Vitaliy
    Synnaeve, Gabriel
    Collobert, Ronan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022, : 10557 - 10574
  • [14] Machine Learning Tools and Techniques for Prediction of Droughts
    Nitwane, Rashmi
    Bhagile, Vaishali D.
    Deshmukh, R. R.
    [J]. 5TH WORLD CONGRESS ON DISASTER MANAGEMENT, VOL. 2: Nature and Human Induced Disasters, 2023, : 273 - 277
  • [15] Multimedia technology applied to the learning of machine tools
    Vara, JP
    González, VAD
    Frades, JP
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2001, 14 (1-3) : 87 - 92
  • [16] Machine Learning Tools to Time Series Forecasting
    Ramirez-Amaro, K.
    Chimal-Eguia, J. C.
    [J]. MICAI 2007: SIXTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, : 91 - 101
  • [17] On the Effectiveness of Machine Learning Experiment Management Tools
    Idowu, Samuel
    Osman, Osman
    Struber, Daniel
    Berger, Thorsten
    [J]. 2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: SOFTWARE ENGINEERING IN PRACTICE (ICSE-SEIP 2022), 2022, : 207 - 208
  • [18] Detection of microsleep episodes with machine learning tools
    Skorucak, J.
    Schreier, D.
    Hertig-Godeschalk, A.
    Malafeev, A.
    Mathis, J.
    Achermann, P.
    [J]. JOURNAL OF SLEEP RESEARCH, 2018, 27
  • [19] Supervised machine learning tools: a tutorial for clinicians
    Lo Vercio, Lucas
    Amador, Kimberly
    Bannister, Jordan J.
    Crites, Sebastian
    Gutierrez, Alejandro
    MacDonald, M. Ethan
    Moore, Jasmine
    Mouches, Pauline
    Rajashekar, Deepthi
    Schimert, Serena
    Subbanna, Nagesh
    Tuladhar, Anup
    Wang, Nanjia
    Wilms, Matthias
    Winder, Anthony
    Forkert, Nils D.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2020, 17 (06)
  • [20] Software Identification by Standard Machine Learning Tools
    M. E. Sukhoparov
    K. I. Salakhutdinova
    I. S. Lebedev
    [J]. Automatic Control and Computer Sciences, 2021, 55 : 1175 - 1179