In-plane crashing behavior and energy absorption of re-entrant honeycomb reinforced by arched ribs

被引:16
|
作者
Zou, Zhen
Xu, Fengxiang [1 ]
Niu, Xiaoqiang
Fang, Tengyuan
Jiang, Zhoushun
机构
[1] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Arched ribs; Re-entrant honeycombs; Reinforced structures; Collapse mode; Energy absorption; NEGATIVE POISSONS RATIO; RESISTANCE; DENSIFICATION; DESIGN;
D O I
10.1016/j.compstruct.2023.117615
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Arched structures have increased in importance over the last few years due to their high efficiency in bearing loads. This paper introduces arched ribs to the classical re-entrant honeycomb (RH) as reinforced structures, and then its energy absorption is improved by simultaneously utilizing the reinforced structures and the auxetic deformation of RHs. Herein, the in-plane crashing response of reinforced RHs (RRH) under different impact velocities is investigated with finite element methods verified against the quasi-static compression experiment of 3D-printed RRH specimens. By introducing arched structures, the deformation of RHs becomes more stable and regular, and two plateau stresses are produced in the stress-strain curves of RRHs. Benefiting from the stacking deformation of RRHs and pure compression characteristic of catenary arches, the second plateau stress of all-reinforced RHs (ARH) is 3.8 times higher than the first one. Two plateau stresses of ARHs are derivated theoretically with a relative error of less than 7 %. Furthermore, a parametric study is performed to explore the effect of impact velocities, thicknesses, and the height of arched ribs on the crashing response of RRHs. The present investigation paves a new way toward strengthening the energy absorption of conventional honeycombs.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] An investigation of in-plane tensile properties of re-entrant chiral auxetic structure
    Alomarah, Amer
    Ruan, Dong
    Masood, Syed
    Sbarski, Igor
    Faisal, Batool
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 96 (5-8): : 2013 - 2029
  • [42] An investigation of in-plane tensile properties of re-entrant chiral auxetic structure
    Amer Alomarah
    Dong Ruan
    Syed Masood
    Igor Sbarski
    Batool Faisal
    The International Journal of Advanced Manufacturing Technology, 2018, 96 : 2013 - 2029
  • [43] In-plane compression response of foam filled re-entrant auxetic structure
    Xuke Lan
    Guang Wu
    Guangyan Huang
    Applied Composite Materials, 2022, 29 : 2245 - 2263
  • [44] Energy absorption of re-entrant honeycombs in tension and compression
    Zhang, Jianjun
    Lu, Guoxing
    ENGINEERING STRUCTURES, 2023, 288
  • [45] In-plane compression response of foam filled re-entrant auxetic structure
    Lan, Xuke
    Wu, Guang
    Huang, Guangyan
    APPLIED COMPOSITE MATERIALS, 2022, 29 (06) : 2245 - 2263
  • [46] Deformation Behaviors and Energy Absorption of Composite Re-Entrant Honeycomb Cylindrical Shells under Axial Load
    Ma, Nanfang
    Deng, Qingtian
    Li, Xinbo
    MATERIALS, 2021, 14 (23)
  • [47] The arrangement patterns optimization of 3D honeycomb and 3D re-entrant honeycomb structures for energy absorption
    Xia, BingChen
    Huang, Xingyuan
    Chang, Lijun
    Zhang, Ruotong
    Liao, Zhikang
    Cai, Zhihua
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [48] Static and modal analysis of sandwich panels with rib-reinforced re-entrant honeycomb
    Xinyi, Lai
    Yifeng, Zhong
    Rong, Liu
    Yilin, Zhu
    Evrard, Irakoze Alain
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 275
  • [49] Parameter-Independent Deformation Behaviour of Diagonally Reinforced Doubly Re-Entrant Honeycomb
    Szeles, Levente
    Horvath, Richard
    Reger, Mihaly
    POLYMERS, 2024, 16 (21)
  • [50] In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson's ratio
    Tan, H. L.
    He, Z. C.
    Li, K. X.
    Li, Eric
    Cheng, A. G.
    Xu, Bing
    COMPOSITE STRUCTURES, 2019, 229