An efficient scheme for solving nonlinear generalized kuramoto-sivashinksy processes

被引:0
|
作者
Mahmood, Bewar A. [1 ]
Tahir, Shko A. [2 ]
Jwamer, Karwan H. F. [2 ]
机构
[1] Univ Duhok, Coll Sci, Math Dept, Duhok, Iraq
[2] Univ Sulaimani, Coll Sci, Math Dept, Sulaimani, Iraq
关键词
quintic B-spline; collocation method; nonlinear partial differential equations; SSP-RK54; scheme; plasma physics; EQUATION; SOLITARY; WAVES; PROPAGATION; INSTABILITY; ORDER; CHAOS;
D O I
10.1088/1402-4896/acf89b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we investigate the numerical solution of generalized Kuramoto-Sivashinksy (GKS) problems based on the collocation of the quantic B-spline (QBS) and high-order strong stability-preserving Runge-Kutta (SSPRK54) scheme. When considering nonlinear parts that lose real features, we address the issue without resorting to any transformations or linearization. The efficiency and accuracy of our proposed technique are evaluated using a variety of illustrative examples. The numerical results show that our approach captured the natural behaviour of the problems well and consumed less storage space.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A NUMERICAL SCHEME FOR SOLVING NONLINEAR BACKWARD PARABOLIC PROBLEMS
    Zakeri, A.
    Jannati, Q.
    Amiri, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (06) : 1453 - 1464
  • [42] An iterative scheme for solving nonlinear equations with monotone operators
    N.S. Hoang
    A.G. Ramm
    BIT Numerical Mathematics, 2008, 48
  • [43] An iterative scheme for solving nonlinear equations with monotone operators
    Hoang, N. S.
    Ramm, A. G.
    BIT NUMERICAL MATHEMATICS, 2008, 48 (04) : 725 - 741
  • [44] Generalized homotopy method for solving nonlinear differential equations
    Vazquez-Leal, Hector
    COMPUTATIONAL & APPLIED MATHEMATICS, 2014, 33 (01): : 275 - 288
  • [45] Difference schemes for solving the generalized nonlinear Schrodinger equation
    Chang, QS
    Jia, EH
    Sun, W
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (02) : 397 - 415
  • [46] Generalized homotopy method for solving nonlinear differential equations
    Hector Vazquez-Leal
    Computational and Applied Mathematics, 2014, 33 : 275 - 288
  • [47] Efficient Model Solving for Markov Decision Processes
    Sapio, Adrian
    Bhattacharyya, Shuvra S.
    Wolf, Marilyn
    2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2020, : 607 - 611
  • [48] An efficient sampling scheme for dynamic generalized models
    Migon, Helio S.
    Schmidt, Alexandra M.
    Ravines, Romy E. R.
    Pereira, Joao B. M.
    COMPUTATIONAL STATISTICS, 2013, 28 (05) : 2267 - 2293
  • [49] An efficient sampling scheme for dynamic generalized models
    Helio S. Migon
    Alexandra M. Schmidt
    Romy E. R. Ravines
    João B. M. Pereira
    Computational Statistics, 2013, 28 : 2267 - 2293
  • [50] An efficient identity based generalized signcryption scheme
    Kushwah, Prashant
    Lal, Sunder
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (45) : 6382 - 6389