Modification of histidine repeat proteins by inorganic polyphosphate

被引:17
|
作者
Neville, Nolan [1 ]
Lehotsky, Kirsten [1 ]
Yang, Zhiyun [1 ]
Klupt, Kody A. [1 ]
Denoncourt, Alix [2 ]
Downey, Michael [2 ,3 ]
Jia, Zongchao [1 ]
机构
[1] Queens Univ, Dept Biomed & Mol Sci, Kingston, ON K7L 3N6, Canada
[2] Univ Ottawa, Dept Cellular & Mol Med, Ottawa, ON K1H 8M5, Canada
[3] Ottawa Inst Syst Biol, Ottawa, ON K1H 8M5, Canada
来源
CELL REPORTS | 2023年 / 42卷 / 09期
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
REVEALS; KINASE; MAFB; POLYPHOSPHORYLATION; ACTIVATION; RESIDUES; SIGNAL; GENE;
D O I
10.1016/j.celrep.2023.113082
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate that is present in nearly all organisms studied to date. A remarkable function of polyP involves its attachment to lysine residues via non-enzymatic post-translational modification (PTM), which is presumed to be covalent. Here, we show that proteins containing tracts of consecutive histidine residues exhibit a similar modification by polyP, which confers an electrophoretic mobility shift on NuPAGE gels. Our screen uncovers 30 human and yeast histidine repeat proteins that undergo histidine polyphosphate modification (HPM). This polyP modification is histidine dependent and non-covalent in nature, although remarkably it withstands harsh denaturing conditions-a hallmark of covalent PTMs. Importantly, we show that HPM disrupts phase separation and the phosphorylation activity of the human protein kinase DYRK1A, and inhibits the activity of the transcription factor MafB, highlighting HPM as a potential protein regulatory mechanism.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Inorganic polyphosphate, a multifunctional polyanionic protein scaffold
    Xie, Lihan
    Jakob, Ursula
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (06) : 2180 - 2190
  • [42] Signalling properties of inorganic polyphosphate in the mammalian brain
    Holmstroem, Kira M.
    Marina, Nephtali
    Baev, Artyom Y.
    Wood, Nicholas W.
    Gourine, Alexander V.
    Abramov, Andrey Y.
    NATURE COMMUNICATIONS, 2013, 4
  • [43] INTRACELLULAR LOCALIZATION OF INORGANIC POLYPHOSPHATE IN NEUROSPORA CRASSA
    HAROLD, FM
    MILLER, A
    BIOCHIMICA ET BIOPHYSICA ACTA, 1961, 50 (02) : 261 - &
  • [44] New aspects of inorganic polyphosphate metabolism and function
    Kulaev, I
    Vagabov, V
    Kulakovskaya, T
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 1999, 88 (02) : 111 - 129
  • [45] Signalling properties of inorganic polyphosphate in the mammalian brain
    Kira M. Holmström
    Nephtali Marina
    Artyom Y. Baev
    Nicholas W. Wood
    Alexander V. Gourine
    Andrey Y. Abramov
    Nature Communications, 4
  • [46] Inorganic polyphosphate: a possible stimulant of bone formation
    Hacchou, Y.
    Uematsu, T.
    Ueda, O.
    Usui, Y.
    Uematsu, S.
    Takahashi, M.
    Uchihashi, T.
    Kawazoe, Y.
    Shiba, T.
    Kurihara, S.
    Yamaoka, M.
    Furusawa, K.
    JOURNAL OF DENTAL RESEARCH, 2007, 86 (09) : 893 - 897
  • [47] Protein purification via consecutive histidine-polyphosphate interaction
    Zhou, Zihao
    Jin, Jin
    Deng, Xu
    Jia, Zongchao
    PROTEIN SCIENCE, 2024, 33 (06)
  • [48] INORGANIC POLYPHOSPHATE IN MAMMALIAN-CELLS AND TISSUES
    KUMBLE, KD
    KORNBERG, A
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (11) : 5818 - 5822
  • [49] Inorganic polyphosphate: A molecular fossil come to life
    Kornberg, A
    Fraley, CD
    ASM NEWS, 2000, 66 (05): : 275 - 280
  • [50] Inorganic Polyphosphate and Energy Metabolism in Mammalian Cells
    Pavlov, Evgeny
    Aschar-Sobbi, Roozbeh
    Campanella, Michelangelo
    Turner, Raymond J.
    Gomez-Garcia, Maria R.
    Abramov, Andrey Y.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (13) : 9420 - 9428