Mechanical metamaterials

被引:15
|
作者
Craster, Richard [1 ,2 ]
Guenneau, Sebastien [2 ]
Kadic, Muamer [3 ]
Wegener, Martin [4 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Imperial Coll, UMI 2004 Abraham Moivre, CNRS, London SW7 2AZ, England
[3] Univ Bourgogne Franche Comte, Inst FEMTO ST, CNRS, UMR 6174, Besancon, France
[4] Karlsruhe Inst Technol KIT, Inst Appl Phys, Inst Nanotechnol, D-76128 Karlsruhe, Germany
关键词
metamaterials; cloaking; homogenisation; topological crystals; space-time media; pentamode; auxetics; ALMOST-PERIODIC HOMOGENIZATION; 2-SCALE CONVERGENCE METHOD; NEGATIVE REFRACTIVE-INDEX; FIBER-REINFORCED MEDIA; BAND-GAP STRUCTURE; ELASTIC-WAVES; ACOUSTICAL ACTIVITY; STOCHASTIC HOMOGENIZATION; DYNAMIC HOMOGENIZATION; INVERSE HOMOGENIZATION;
D O I
10.1088/1361-6633/ace069
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mechanical metamaterials, also known as architected materials, are rationally designed composites, aiming at elastic behaviors and effective mechanical properties beyond ('meta') those of their individual ingredients-qualitatively and/or quantitatively. Due to advances in computational science and manufacturing, this field has progressed considerably throughout the last decade. Here, we review its mathematical basis in the spirit of a tutorial, and summarize the conceptual as well as experimental state-of-the-art. This summary comprises disordered, periodic, quasi-periodic, and graded anisotropic functional architectures, in one, two, and three dimensions, covering length scales ranging from below one micrometer to tens of meters. Examples include extreme ordinary linear elastic behavior from artificial crystals, e.g. auxetics and pentamodes, 'negative' effective properties, behavior beyond classical linear elasticity, e.g. arising from local resonances, chirality, beyond-nearest-neighbor interactions, quasi-crystalline mechanical metamaterials, topological band gaps, cloaking based on coordinate transformations and on scattering cancelation, seismic protection, nonlinear and programmable metamaterials, as well as space-time-periodic architectures.
引用
收藏
页数:64
相关论文
共 50 条
  • [21] Hierarchical Auxetic Mechanical Metamaterials
    Gatt, Ruben
    Mizzi, Luke
    Azzopardi, Joseph I.
    Azzopardi, Keith M.
    Attard, Daphne
    Casha, Aaron
    Briffa, Joseph
    Grima, Joseph N.
    SCIENTIFIC REPORTS, 2015, 5
  • [22] Transformable topological mechanical metamaterials
    Rocklin, D. Zeb
    Zhou, Shangnan
    Sun, Kai
    Mao, Xiaoming
    NATURE COMMUNICATIONS, 2017, 8
  • [23] Rational design of mechanical metamaterials
    Harry Geddes
    Nature Computational Science, 2022, 2 : 618 - 618
  • [24] Soft Adaptive Mechanical Metamaterials
    Khajehtourian, Romik
    Kochmann, Dennis M.
    FRONTIERS IN ROBOTICS AND AI, 2021, 8
  • [25] Ultralight, Ultrastiff Mechanical Metamaterials
    Zheng, Xiaoyu
    Lee, Howon
    Weisgraber, Todd H.
    Shusteff, Maxim
    DeOtte, Joshua
    Duoss, Eric B.
    Kuntz, Joshua D.
    Biener, Monika M.
    Ge, Qi
    Jackson, Julie A.
    Kucheyev, Sergei O.
    Fang, Nicholas X.
    Spadaccini, Christopher M.
    SCIENCE, 2014, 344 (6190) : 1373 - 1377
  • [26] On the practicability of pentamode mechanical metamaterials
    Kadic, Muamer
    Bueckmann, Tiemo
    Stenger, Nicolas
    Thiel, Michael
    Wegener, Martin
    APPLIED PHYSICS LETTERS, 2012, 100 (19)
  • [27] Reprogrammable flexible mechanical metamaterials
    Zheng, Xiaoyang
    Uto, Koichiro
    Hu, Wei-Hsun
    Chen, Ta-Te
    Naito, Masanobu
    Watanabe, Ikumu
    APPLIED MATERIALS TODAY, 2022, 29
  • [28] Mechanical nonlinearities in electromagnetic metamaterials
    Lapine, M.
    2013 7TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2013), 2013, : 352 - 354
  • [29] Mechanical metamaterials: a state of the art
    Barchiesi, Emilio
    Spagnuolo, Mario
    Placidi, Luca
    MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (01) : 212 - 234
  • [30] MECHANICAL METAMATERIALS The strength awakens
    Pacchioni, Giulia
    NATURE REVIEWS MATERIALS, 2016, 1 (03):