Electrochemical and kinetic analysis of Ce recovery using Ga electrode in LiCl-KCl melt

被引:8
|
作者
Ding, Li [1 ,2 ,3 ]
Yang, Shanxin [2 ,3 ]
Yan, Yongde [1 ,2 ,3 ]
Xue, Yun [2 ,3 ]
Ma, Fuqiu [2 ,3 ]
Zhu, Kai [1 ]
Liu, Wei [4 ]
Deng, Yuan [4 ]
机构
[1] Harbin Engn Univ, Minist Educ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Engn Univ, Yantai Res Inst, Yantai 264006, Shandong, Peoples R China
[3] Harbin Engn Univ, Grad Sch, Yantai 264006, Shandong, Peoples R China
[4] Inner Mongolia Rare Earth Funct Mat Innovat Ctr, Baotou 014010, Inner Mongolia, Peoples R China
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
Recovery; Rare earth elements; LiCl-KCl melt; Liquid cathode; Exchange current density; RARE-EARTH-ELEMENTS; MOLTEN-SALT; THERMODYNAMIC PROPERTIES; UNDERPOTENTIAL DEPOSITION; CO-REDUCTION; URANIUM; CERIUM; BEHAVIORS; ALUMINUM; ALLOYS;
D O I
10.1016/j.seppur.2023.124492
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Electrode material is an obstacle to the application of molten salt electrolysis in Ce recovery. Liquid Ga is a potential candidate for the cathode, but the corresponding reaction process on the electrode in the melt has yet to be fully understood and systematically studied. Herein, the electrochemical reaction and the kinetics of recovering Ce using Ga electrodes were investigated by various electrochemical methods. A concentration-dependent test of the co-deposition reaction revealed the continuous alloying process of reduced Ce. The electrolytic reduction of Ce ions on liquid Ga was studied by electrochemical impedance spectroscopy (EIS). The result shows that the reaction is controlled by diffusion. In addition, some important parameters such as exchange current density, activity coefficient and solubility were determined by pulsed electrolysis and coulomb titration, allowing a preliminary assessment of the electrolytic extraction of Ce on the Ga electrode.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Electrode behavior of hydrogen reduction in LiCl-KCl melt II. AC impedance analysis
    Ito, H
    Hasegava, Y
    Ito, Y
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) : E148 - E154
  • [32] Electrochemical Properties of Lanthanum on the Liquid Gallium Electrode in LiCl-KCl Eutectic
    Pang, Jing-Wen
    Liu, Kui
    Liu, Ya-Lan
    Nie, Chang-Ming
    Luo, Li-Xia
    Yuan, Li-Yong
    Chai, Zhi-Fang
    Shi, Wei-Qun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (14) : D750 - D756
  • [33] Electrochemical Behaviour of Magnesium(II) on Ni Electrode in LiCl-KCl Eutectic
    Wang Shanshan
    Han Wei
    Zhang Milin
    Li Mei
    Yang Xiaoguang
    Sun Yang
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2018, 34 (01) : 107 - 112
  • [34] Electrochemical behavior of Th(IV) on the bismuth electrode in LiCl-KCl eutectic
    Jiang, Shilin
    Liu, Kui
    Liu, Yalan
    Yin, Taiqi
    Chai, Zhifang
    Shi, Weiqun
    JOURNAL OF NUCLEAR MATERIALS, 2019, 523 : 268 - 275
  • [35] Electrochemical behavior of zirconium in the LiCl-KCl molten salt at Mo electrode
    Chen, Zeng
    Li, Yong Jun
    Li, Sheng Jun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (20) : 5958 - 5961
  • [36] Electrochemical Properties of Uranium on the Liquid Gallium Electrode in LiCl-KCl Eutectic
    Liu, Kui
    Tang, Hong-Bin
    Pang, Jing-Wen
    Liu, Ya-Lan
    Feng, Yi-Xiao
    Chai, Zhi-Fang
    Shi, Wei-Qun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (09) : D554 - D561
  • [37] Stability of UNCl in LiCl-KCl eutectic melt
    Kobayashi, F
    Ogawa, T
    Okamoto, Y
    Akabori, M
    JOURNAL OF ALLOYS AND COMPOUNDS, 1998, 271 : 374 - 377
  • [38] Corrosion of Gadolinium and Ytterbium in LiCl-KCl Melt
    El'kin, O. V.
    Kovalevskii, A. V.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2011, 47 (07) : 865 - 868
  • [39] ELECTROCHEMISTRY OF RHODIUM IN LICL-KCL EUTECTIC MELT
    BAILEY, RA
    BALKO, EN
    NOBILE, AA
    JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1973, 35 (02): : 701 - 704
  • [40] Corrosion of gadolinium and ytterbium in LiCl-KCl melt
    O. V. El’kin
    A. V. Kovalevskii
    Russian Journal of Electrochemistry, 2011, 47 : 865 - 868