High-Throughput Identification, Modeling, and Analysis of Cancer Driver Genes In Vivo

被引:2
|
作者
Tang, Yuning J. J. [1 ]
Shuldiner, Emily G. G. [2 ]
Karmakar, Saswati [1 ]
Winslow, Monte M. M. [1 ,3 ]
机构
[1] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[3] Stanford Univ, Sch Med, Dept Pathol, Stanford, CA 94305 USA
来源
基金
美国国家卫生研究院;
关键词
INSERTIONAL MUTAGENESIS; TRANSPOSON MUTAGENESIS; FUNCTIONAL GENOMICS; TUMOR SUPPRESSORS; MYELOID-LEUKEMIA; TRANSGENIC MICE; MOUSE MODELS; CRISPR; RNA; ACTIVATION;
D O I
10.1101/cshperspect.a041382
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The vast number of genomic and molecular alterations in cancer pose a substantial challenge to uncovering the mechanisms of tumorigenesis and identifying therapeutic targets. High-throughput functional genomic methods in genetically engineered mouse models allow for rapid and systematic investigation of cancer driver genes. In this review, we discuss the basic concepts and tools for multiplexed investigation of functionally important cancer genes in vivo using autochthonous cancer models. Furthermore, we highlight emerging technical advances in the field, potential opportunities for future investigation, and outline a vision for integrating multiplexed genetic perturbations with detailed molecular analyses to advance our understanding of the genetic and molecular basis of cancer.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Enabling high-throughput experimentation through high-throughput analysis
    Schafer, Wes
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [32] High-throughput analysis of driver mutations in FGFR3 by digital PCR
    Moura, S.
    Salazar, R.
    Tiemann-Boege, I.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1609 - 1609
  • [33] Identification of genes required for eye development by high-throughput screening of mouse knockouts
    Bret A. Moore
    Brian C. Leonard
    Lionel Sebbag
    Sydney G. Edwards
    Ann Cooper
    Denise M. Imai
    Ewan Straiton
    Luis Santos
    Christopher Reilly
    Stephen M. Griffey
    Lynette Bower
    David Clary
    Jeremy Mason
    Michel J. Roux
    Hamid Meziane
    Yann Herault
    Colin McKerlie
    Ann M. Flenniken
    Lauryl M. J. Nutter
    Zorana Berberovic
    Celeste Owen
    Susan Newbigging
    Hibret Adissu
    Mohammed Eskandarian
    Chih-Wei Hsu
    Sowmya Kalaga
    Uchechukwu Udensi
    Chinwe Asomugha
    Ritu Bohat
    Juan J. Gallegos
    John R. Seavitt
    Jason D. Heaney
    Arthur L. Beaudet
    Mary E. Dickinson
    Monica J. Justice
    Vivek Philip
    Vivek Kumar
    Karen L. Svenson
    Robert E. Braun
    Sara Wells
    Heather Cater
    Michelle Stewart
    Sharon Clementson-Mobbs
    Russell Joynson
    Xiang Gao
    Tomohiro Suzuki
    Shigeharu Wakana
    Damian Smedley
    J. K Seong
    Glauco Tocchini-Valentini
    Communications Biology, 1
  • [34] High-throughput identification and validation of in situ-expressed genes of Lactococcus lactis
    Bachmann, Herwig
    Kleerebezem, Michiel
    Vlieg, Johan E. T. van Hylckama
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (15) : 4727 - 4736
  • [35] Identification of imprinted genes in the skeletal muscle of newborn piglets by high-throughput sequencing
    Hou, Xinhua
    Wang, Zishuai
    Shi, Liangyu
    Wang, Ligang
    Zhao, Fuping
    Liu, Xin
    Gao, Hongmei
    Shi, Lijun
    Yan, Hua
    Wang, Lixian
    Zhang, Longchao
    ANIMAL GENETICS, 2022, 53 (04) : 479 - 486
  • [36] Identification of novel genes of hypermethylation in gastric adenocarcinoma using high-throughput techniques
    Kim, Sun Jeong
    Lee, Won Suk
    Choi, Sol
    Oh, Bong-Kyeong
    Chung, Hyun Cheol
    Roh, Jae Kyung
    Kim, Se Kyu
    Noh, Sung Hoon
    Rha, Sun Young
    Jeung, Hei-Cheul
    CANCER RESEARCH, 2009, 69
  • [37] High-throughput mutational analysis of the human cancer genome
    Ma, Patrick C.
    Zhang, Xiaodong
    Wang, Zhenghe J.
    PHARMACOGENOMICS, 2006, 7 (04) : 597 - 612
  • [38] Identification of genes required for eye development by high-throughput screening of mouse knockouts
    Moore, Bret A.
    Leonard, Brian C.
    Sebbag, Lionel
    Edwards, Sydney G.
    Cooper, Ann
    Imai, Denise M.
    Straiton, Ewan
    Santos, Luis
    Reilly, Christopher
    Griffey, Stephen M.
    Bower, Lynette
    Clary, David
    Mason, Jeremy
    Roux, Michel J.
    Meziane, Hamid
    Herault, Yann
    McKerlie, Colin
    Flenniken, Ann M.
    Nutter, Lauryl M. J.
    Berberovic, Zorana
    Owen, Celeste
    Newbigging, Susan
    Adissu, Hibret
    Eskandarian, Mohammed
    Hsu, Chih-Wei
    Kalaga, Sowmya
    Udensi, Uchechukwu
    Asomugha, Chinwe
    Bohat, Ritu
    Gallegos, Juan J.
    Seavitt, John R.
    Heaney, Jason D.
    Beaudet, Arthur L.
    Dickinson, Mary E.
    Justice, Monica J.
    Philip, Vivek
    Kumar, Vivek
    Svenson, Karen L.
    Braun, Robert E.
    Wells, Sara
    Cater, Heather
    Stewart, Michelle
    Clementson-Mobbs, Sharon
    Joynson, Russell
    Gao, Xiang
    Suzuki, Tomohiro
    Wakana, Shigeharu
    Smedley, Damian
    Seong, J. K.
    Tocchini-Valentini, Glauco
    COMMUNICATIONS BIOLOGY, 2018, 1
  • [39] A Mixture Modeling Framework for Differential Analysis of High-Throughput Data
    Taslim, Cenny
    Lin, Shili
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2014, 2014
  • [40] Combining High-Throughput Synthesis and High-Throughput Protein Crystallography for Accelerated Hit Identification
    Sutanto, Fandi
    Shaabani, Shabnam
    Oerlemans, Rick
    Eris, Deniz
    Patil, Pravin
    Hadian, Mojgan
    Wang, Meitian
    Sharpe, May Elizabeth
    Groves, Matthew R.
    Domling, Alexander
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (33) : 18231 - 18239