Accounting for Correlated AMV Satellite Observation Errors in the Ensemble Data Assimilation System
被引:0
|
作者:
Mizyak, V. G.
论文数: 0引用数: 0
h-index: 0
机构:
Hydrometeorol Res Ctr Russian Federat, Bolshoi Predtechenskii per 13, Moscow 123376, RussiaHydrometeorol Res Ctr Russian Federat, Bolshoi Predtechenskii per 13, Moscow 123376, Russia
Mizyak, V. G.
[1
]
Shlyaeva, A. V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Corp Atmospher Res, Joint Ctr Satellite Data Assimilat, UCAR Foothills Lab 4, 300 Mitchell Lane, Boulder, CO 80301 USAHydrometeorol Res Ctr Russian Federat, Bolshoi Predtechenskii per 13, Moscow 123376, Russia
Shlyaeva, A. V.
[2
]
Tolstykh, M. A.
论文数: 0引用数: 0
h-index: 0
机构:
Hydrometeorol Res Ctr Russian Federat, Bolshoi Predtechenskii per 13, Moscow 123376, Russia
Russian Acad Sci, Marchuk Inst Numer Math, ul Gubkina 8, Moscow 119333, RussiaHydrometeorol Res Ctr Russian Federat, Bolshoi Predtechenskii per 13, Moscow 123376, Russia
Tolstykh, M. A.
[1
,3
]
机构:
[1] Hydrometeorol Res Ctr Russian Federat, Bolshoi Predtechenskii per 13, Moscow 123376, Russia
[2] Univ Corp Atmospher Res, Joint Ctr Satellite Data Assimilat, UCAR Foothills Lab 4, 300 Mitchell Lane, Boulder, CO 80301 USA
[3] Russian Acad Sci, Marchuk Inst Numer Math, ul Gubkina 8, Moscow 119333, Russia
The effect of considering correlated errors in AMV (Atmospheric Motion Vectors) satellite observations of wind in the local ensemble transform Kalman filter data assimilation system is studied. It is customary to use a diagonal covariance matrix of errors in observations taking part in assimilation. When assimilating satellite data with correlated errors, the data are thinned, and the values of diagonal elements of the error covariance matrix are often overestimated. This is accompanied by the loss of useful information about the correlation between the errors. The present study uses a different method: the elements of the error covariance matrix for AMV satellite observations are simulated using a second-order autoregressive function. It is shown that such approach reduces the root-mean-square error in initial data for a numerical weather prediction model, in particular on small scales, and improves the forecast quality. It is found that the application of the non-diagonal AMV observation error covariance matrix increases the accuracy of analysis and forecast fields.
机构:
CERFACS CECI CNRS UMR 5318, Toulouse, France
Meteo France, CNRM UMR 3589, Toulouse, France
CNRS, Toulouse, FranceCERFACS CECI CNRS UMR 5318, Toulouse, France
Guillet, Oliver
Weaver, Anthony T.
论文数: 0引用数: 0
h-index: 0
机构:
CERFACS CECI CNRS UMR 5318, Toulouse, FranceCERFACS CECI CNRS UMR 5318, Toulouse, France
Weaver, Anthony T.
Vasseur, Xavier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse, ISAE SUPAERO, Toulouse, FranceCERFACS CECI CNRS UMR 5318, Toulouse, France
Vasseur, Xavier
Michel, Yann
论文数: 0引用数: 0
h-index: 0
机构:
Meteo France, CNRM UMR 3589, Toulouse, France
CNRS, Toulouse, FranceCERFACS CECI CNRS UMR 5318, Toulouse, France
Michel, Yann
Gratton, Serge
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse, INPT IRIT, Toulouse, France
ENSEEIHT, Toulouse, FranceCERFACS CECI CNRS UMR 5318, Toulouse, France
Gratton, Serge
Guerol, Selime
论文数: 0引用数: 0
h-index: 0
机构:
CERFACS CECI CNRS UMR 5318, Toulouse, FranceCERFACS CECI CNRS UMR 5318, Toulouse, France
机构:
European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, EnglandEuropean Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England
Geer, Alan J.
Bauer, Peter
论文数: 0引用数: 0
h-index: 0
机构:
European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, EnglandEuropean Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England
机构:
Korea Inst Atmospher Predict Syst, Seoul, South Korea
Korea Inst Atmospher Predict Syst, Data Assimilat Team, 4F, 35, Boramae Ro 5 gil, Seoul, South KoreaKorea Inst Atmospher Predict Syst, Seoul, South Korea
Kim, Hyeyoung
Kang, Jeon-Ho
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Atmospher Predict Syst, Seoul, South KoreaKorea Inst Atmospher Predict Syst, Seoul, South Korea
Kang, Jeon-Ho
Kwon, In-Hyuk
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Atmospher Predict Syst, Seoul, South KoreaKorea Inst Atmospher Predict Syst, Seoul, South Korea