Redox-site accessibility of composites containing a 2D redox-active covalent organic framework: from optimization to application

被引:6
|
作者
Gunther, Tyran [1 ]
Oka, Kouki [2 ,3 ]
Olsson, Sandra [1 ]
Ahlen, Michelle [1 ]
Tohnai, Norimitsu [2 ,3 ]
Emanuelsson, Rikard [4 ]
机构
[1] Uppsala Univ, Dept Mat Sci & Engn, Angstrom Lab, Nanotechnol & Funct Mat, Box 35, SE-75103 Uppsala, Sweden
[2] Osaka Univ, Ctr Future Innovat CFi, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[3] Osaka Univ, Grad Sch Engn, Dept Appl Chem, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[4] Uppsala Univ, Dept Chem BMC, Box 576, SE-75123 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
CONDUCTING POLYMER; ENERGY-STORAGE; CATHODE MATERIALS; CHARGE STORAGE; DENSITY; CAPABILITY; KINETICS;
D O I
10.1039/d3ta00422h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Redox-active covalent organic frameworks (RACOFs) can be employed in various functional materials and enesrgy applications. A crucial performance or efficiency indicator is the percentage of redox centres that can be utilised. Herein, the term redox-site accessibility (RSA) is defined and shown to be an effective metric for developing and optimising a 2D RACOF (viz., TpOMe-DAQ made from 2,4,6-trimethoxy-1,3,5-benzenetricarbaldehyde [TpOMe] and 2,6-diaminoanthraquinone [DAQ]) as an anode material for potential organic-battery applications. Pristine TpOMe-DAQ utilises only 0.76% of its redox sites, necessitating the use of conductivity-enhancement strategies such as blending it with different conductive carbons, or performing in situ polymerisation with EDOT (3,4-ethylenedioxythiophene) to form a conductive polymer. While conductive carbon-RACOF composites showed a modest RSA improvement of 4.0%, conductive polymer-RACOF composites boosted the redox-site usage (RSA) to 90% at low mass loadings. The material and electrochemical characteristics of the conductive polymer-RACOF composite containing more-than-necessary conductive polymer showed a reduced surface area but almost identical electrochemical behaviour, compared to the optimal ratio. The high RSA of the optimally loaded composite was replicated in a RACOF-air battery with over 90% active redox sites. We believe that the reported approach and methods, which can be employed on a milligram scale, could serve as a general guide for the electrification and characterisation of RACOFs, as well as for other redox-active porous polymers.
引用
收藏
页码:13923 / 13931
页数:10
相关论文
共 50 条
  • [41] Redox-active microsized metal-organic framework for efficient nonenzymatic H2O2 sensing
    Zhang, Daojun
    Zhang, Jingchao
    Shi, Huaizhong
    Guo, Xiuli
    Guo, Yuanyuan
    Zhang, Renchun
    Yuan, Baiqing
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 221 : 224 - 229
  • [42] Reversible Capture and Release of Cl2 and Br2 with a Redox-Active Metal-Organic Framework
    Tulchinsky, Yuri
    Hendon, Christopher H.
    Lomachenko, Kirill A.
    Borfecchia, Elisa
    Melot, Brent C.
    Hudson, Matthew R.
    Tarver, Jacob D.
    Korzynski, Maciej D.
    Stubbs, Amanda W.
    Kagan, Jacob J.
    Lamberti, Carlo
    Brown, Craig M.
    Dinca, Mircea
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (16) : 5992 - 5997
  • [43] Redox-active sp2-c connected metal covalent organic frameworks for selective detection and reductive separation of uranium
    Liu, Jin-Lan
    Peng, Zhi-Hai
    Qi, Jia-Xin
    Zhang, Cheng-Rong
    Zhang, Zhen-Wen
    Zhang, Li
    Liang, Ru-Ping
    Qiu, Jian-Ding
    ADVANCED SENSOR AND ENERGY MATERIALS, 2024, 3 (04):
  • [44] Stepwise Synthesis via Mechanochemical Reaction for Multistate Redox-active 2D Zinc(II) Coordination Network
    Ha, Joo Yeon
    Deekamwong, Krittanun
    Ohtsu, Hiroyoshi
    Kim, Kimoon
    Hashizume, Daisuke
    Kawano, Masaki
    CHEMISTRY LETTERS, 2018, 47 (09) : 1184 - 1186
  • [45] Enhancing selective CO2 adsorption via chemical reduction of a redox-active metal-organic framework
    Leong, Chanel F.
    Faust, Thomas B.
    Turner, Peter
    Usov, Pavel M.
    Kepert, Cameron J.
    Babarao, Ravichandar
    Thornton, Aaron W.
    D'Alessandro, Deanna M.
    DALTON TRANSACTIONS, 2013, 42 (27) : 9831 - 9839
  • [46] Metal-Organic Framework with a Redox-Active Bridge Enables Electrochemically Highly Selective Removal of Arsenic from Water
    Shi, Wei
    Ma, Jinxing
    Gao, Fei
    Dai, Ruobin
    Su, Xiao
    Wang, Zhiwei
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (15) : 6342 - 6352
  • [47] Redox-active porous metal-organic framework producing silver nanoparticles from AgI ions at room temperature
    Moon, HR
    Kim, JH
    Suh, MP
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (08) : 1261 - 1265
  • [48] Double redox-active polyimide-based covalent organic framework induced by lithium ion for boosting high-performance aqueous Zn2+storage
    An, Yafei
    Zhang, Heng
    Geng, Dongxiang
    Fu, Zhijian
    Liu, Ziming
    He, Jing
    Zhao, Yue
    Shi, Minjie
    Yan, Chao
    CHEMICAL ENGINEERING JOURNAL, 2023, 477 (477)
  • [49] Light-driven H2O2 production over redox-active imine-linked covalent organic frameworks
    Zhang, Songlin
    Hu, Jinwen
    Shang, Wenzhe
    Guo, Jingya
    Cheng, Xusheng
    Song, Suchan
    Liu, Tianna
    Liu, Wei
    Shi, Yantao
    ADVANCED POWDER MATERIALS, 2024, 3 (02):
  • [50] Donor-π-acceptor heterojunctions constructed from the rGO network and redox-active covalent organic frameworks for high-performance supercapacitors
    Zhang, Anqi
    Ran, Pan
    Han, Xiao
    Ke, Siwen
    Qiu, Aoqian
    Zhang, Zedong
    Lv, Yang
    Ding, Mengning
    Zuo, Jing-Lin
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (33) : 22037 - 22044